Morphology and Repeatability of Automated Perimetry using Stimulus Sizes III, V and VI

Main Article Content

Michael Wall, M.D. Chris A. Johnson


The purpose of this study is to describe the visual field morphology and the repeatability of normal participants using Humphrey perimetry with stimulus sizes III, V and VI. We tested one eye of 60 ocular healthy participants with the Humphrey perimeter using sizes III (0.43°) SITA Standard, V Full Threshold (1.72°) and VI Full Threshold (3.44°) stimuli. The patients were retested 1-4 weeks later. We compared the mean scores, eccentricity zones, and point-wise sensitivities among the sizes and their retest variability. Repeated measures ANOVA on Ranks was performed with the dependent variable as sensitivity (dB) of average sensitivity of each eccentric zone. The mean sensitivities (average of the two visits) were sizes III: 30.16 ± 1.1, V: 34.4 ± 1.0 and VI 36.0 ± 1.0 (p < 0.001 with all Tukey post hoc paired comparisons significant). Significant differences between the groups were also present for each eccentric zone except 0° for size V vs. size VI. The mean difference on retest across test locations was 0.26 dB for size III, 0.26 dB for size V, and 0.27 dB for size VI indicating minimal learning effect. The difference in variability between sizes III, V and size VI increased with eccentricity, with size III increasing more than the larger stimulus sizes but statistical significance for this difference was not reached. In this investigation, we found with increasing stimulus size, the visual field morphology flattens, and the retest variability becomes slightly less for stimulus sizes V and VI full threshold testing compared with size III SITA standard results.

Article Details

How to Cite
WALL, Michael; JOHNSON, Chris A.. Morphology and Repeatability of Automated Perimetry using Stimulus Sizes III, V and VI. Medical Research Archives, [S.l.], v. 8, n. 6, june 2020. ISSN 2375-1924. Available at: <>. Date accessed: 15 july 2020. doi:
Research Articles



1. Wall M, Woodward KR, Doyle CK, Artes PH. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. Invest Ophthalmol Vis Sci. 2009;50:974-979.
2. Gardiner SK, Swanson WH, Demirel S. The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma. Invest Ophthalmol Vis Sci. 2016;57:288-294.
3. Gardiner SK, Demirel S, Goren D, Mansberger SL, Swanson WH. The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry. Transl Vis Sci Technol. 2015;4:10.
4. Gilpin LB, Stewart WC, Hunt HH, Broom CD. Threshold variability using different Goldmann stimulus sizes. Acta Ophthalmol. 1990;68:674-676.
5. Wall M, Kutzko KS, Chauhan BC. Variability in patients with glaucomatous optic nerve damage is reduced using size V stimuli. Invest Ophthalmol Vis Sci. 1997;38:426-435.
6. Zulauf M, Caprioli J. [Indications for stimulus 3 and 5 in automatic perimetry. Preliminary results]. [German]. Klinische Monatsblatter Fur Augenheilkunde. 1994;204:407-408.
7. Wilensky JT, Mermelstein JR, Siegel HG. The use of different-sized stimuli in automated perimetry. Am J Ophthalmol. 1986;101:710-713.
8. Choplin NT, Sherwood MB, Spaeth GL. The effect of stimulus size on the measured threshold values in automated perimetry. Ophthalmology. 1990;97:371-374.
9. Wall M, Brito CF, Woodward KR, Doyle CK, Kardon RH, Johnson CA. Total Deviation Probability Plots for Stimulus Size V Perimetry: A Comparison with Size III Stimuli. Arch Ophthalmol. 2008;126:473-479.
10. Wall M, Doyle CK, Eden T, Zamba KD, Johnson CA. Size threshold perimetry performs as well as conventional automated perimetry with stimulus sizes III, V, and VI for glaucomatous loss. Invest Ophthalmol Vis Sci. 2013;54:3975-3983.
11. Flanagan JG, Artes PH, Wall M, et al. The Influence of Perimetric Stimulus Size on Defect Detectability in Early Glaucoma #3417. Invest Ophthalmol Vis Sci. 2016;58.
12. Kalloniatis M, Khuu SK. Equating spatial summation in visual field testing reveals greater loss in optic nerve disease. Ophthalmic Physiol Opt. 2016;36:439-452.
13. Khuu SK, Kalloniatis M. Spatial summation across the central visual field: implications for visual field testing. J Vis. 2015;15:15.
14. Phu J, Khuu SK, Bui BV, Kalloniatis M. A Method Using Goldmann Stimulus Sizes I to V-Measured Sensitivities to Predict Lead Time Gained to Visual Field Defect Detection in Early Glaucoma. Transl Vis Sci Technol. 2018;7:17.
15. Brenton RS, Phelps CD. The normal visual field on the Humphrey field analyzer. Ophthalmologica. 1986;193:56-74.
16. Heijl A, Lindgren G, Olsson J. Normal variability of static perimetric threshold values across the central visual field. Arch Ophthalmol. 1987;105:1544-1549.
17. Bengtsson B, Olsson J, Heijl A, Rootzen H. A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand. 1997;75:368-375.
18. Bengtsson B, Heijl A. Inter-subject variability and normal limits of the SITA Standard, SITA Fast, and the Humphrey Full Threshold computerized perimetry strategies, SITA STATPAC. Acta Ophthalmol Scand. 1999;77:125-129.
19. Wall M, Punke SG, Stickney TL, Brito CF, Withrow KR, Kardon RH. SITA standard in optic neuropathies and hemianopias: a comparison with full threshold testing. Investigative Ophthalmology & Visual Science. 2001;42:528-537.
20. Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci. 2002;43:2654-2659.
21. Heijl A, Lindgren A, Lindgren G. Test-retest variability in glaucomatous visual fields. Am J Ophthalmol. 1989;108:130-135.
22. Heijl A, Lindgren A, Lindgren G, Patella M. Inter-test threshold variability in glaucoma. Importance of censored observations and general field estimate. In: Mills RP, Heijl A (eds) Amsterdam: Kugler; 1989:313-324.
23. Boeglin RJ, Caprioli J, Zulauf M. Long-term fluctuation of the visual field in glaucoma. Am J Ophthalmol. 1992;113:396-400.
24. Flammer J, Drance SM, Fankhauser F, Augustiny L. Differential light threshold in automated static perimetry. Factors influencing short-term fluctuation. Arch Ophthalmol. 1984;102:876-879.
25. Werner EB, Saheb N, Thomas D. Variability of static visual threshold responses in patients with elevated IOPs. Arch Ophthalmol. 1982;100:1627-1631.
26. Werner EB, Petrig B, Krupin T, Bishop KI. Variability of automated visual fields in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci. 1989;30:1083-1089.
27. Flammer J. Fluctuations in the Visual Field. In: Drance SM, Anderson DR (eds), Automatic Perimetry in Glaucoma. A Practical Guide Orlando: Grune & Stratton; 1985:161-173.
28. Flammer J, Drance SM, Zulauf M. Differential light threshold. Short- and long-term fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma. Arch Ophthalmol. 1984;102:704-706.
29. Werner EB, Ganiban G, Balazsi AG. Effect of test point location on the magnitude of threshold fluctuation in glaucoma patients undergoing automated perimetry. Perimetry Update 1990/1991, Proceedings of the Xth International Perimetric Society Meeting. 1991:175-181.
30. Gramer E, Kontic D, Krieglstein GK. Computer perimetry of glaucomatous visual field defects at different stimulus sizes (author's transl). [German]. Ophthalmologica. 1981;183:162-167.
31. Sample PA, Bosworth CF, Blumenthal EZ, Girkin C, Weinreb RN. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Investigative Ophthalmology & Visual Science. 2000;41:1783-1790.
32. Sponsel WE, Arango S, Trigo Y, Mensah J. Clinical classification of glaucomatous visual field loss by frequency doubling perimetry. Am J Ophthalmol. 1998;125:830-836.
33. Wall M, Neahring RK, Woodward KR. Sensitivity and specificity of frequency doubling perimetry in neuro-ophthalmic disorders: a comparison with conventional automated perimetry. Investigative Ophthalmology & Visual Science. 2002;43:1277-1283.
34. Sloan LL. Area and luminance of test object as variables in examination of the visual field by projection perimetry. Vision Res. 1961;1:121-138.
35. Hallet PE. Spatial Summation. Vision Res. 1963;3:9-24.
36. Goldmann H. Grundlagen exakter Perimetric. Ophthalmologica. 1945;109:57-70.
37. Tate GW, Linn JR. Principles of Quantitative Perimetry. New York: Grune and Stratton; 1977:17-20.
38. Sloan LL. Area and luminance of test object as variables in examination of the visual field by projection perimetry. Vis Res. 1961;1:121-138.
39. Dannheim F, Drance SM. Studies of spatial summation of central retinal areas in normal people of all ages. Canadian Journal of Ophthalmology. 1971;6:311-319.
40. Dannheim F, Drance SM. Psychovisual disturbances in glaucoma. A study of temporal and spatial summation. Arch Ophthalmol. 1974;91:463-468.
41. Dubois-Poulsen A, Magis C. La notion de sommation spatiale en physiopathologie oculaire. Bibl Ophthalmol. 1957;47:218-230.
42. Pan F, Swanson WH, Dul MW. Evaluation of a two-stage neural model of glaucomatous defect: an approach to reduce test-retest variability. Optom Vis Sci. 2006;83:499-511.
43. Pearson PM, Schmidt LA, Ly-Schroeder E, Swanson WH. Ganglion cell loss and age-related visual loss: a cortical pooling analysis. Optom Vis Sci. 2006;83:444-454.
44. Choplin NT, Sherwood MB, Spaeth GL. The effect of stimulus size on the measured threshold values in automated perimetry. Ophthalmology. 1990;97:371-374.
45. Johnson CA, Keltner JL, Balestrery F. Effects of target size and eccentricity on visual detection and resolution. Vis Res. 1978;18:1217-1222.
46. Swanson WH, Felius J, Birch DG. Effect of stimulus size on static visual fields in patients with retinitis pigmentosa. Ophthalmology. 2000;107:1950-1954.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.