
Nur Duale et al. Medical Research Archives vol 8 issue 9.                Medical Research Archives 

 

Copyright 2020 KEI Journals. All Rights Reserved                                           

 

 

Molecular Portrait of Potential Attention Deficit/ Hyperactivity Disorder 

Candidate Genes and Regulating Micrornas Expression in Normal Human 

Developing Brain Tissues 
 

Authors 

Lene B. Dypås1, Kristine B. Gutzkow1, Ann-Karin Olsen1, Nur Duale1*  

Affiliations 
1Section for Molecular Toxicology, Department of Environmental Health, Norwegian Institute of 

Public Health 

Corresponding author: 

Nur Duale 

Email: nur.duale@fhi.no     

 

Abstract 

Attention-deficit/hyperactivity disorder (ADHD) is the most common neuropsychiatric disorder in 
childhood affecting 5-6% of children, and is a major global health concern, which seems to increase in 

magnitude. The etiology of ADHD is still poorly understood, however; there are indications of genetic as 

well as environmental and epigenetic factors contributing to the development of the disorder. The 
objectives of this study was i) to identify potential ADHD candidate genes; ii) to explore spatial and 

temporal transcriptional fluctuation of the identified ADHD candidate genes in normal developing human 

brain tissues, and iii) to identify miRNAs regulating the identified ADHD candidate genes and explore 

how these miRNAs are expressed in normal developing human brain tissues.  

From search in literature and publicly available databases, we identified 103 shared potential 
ADHD candidate genes. These genes were expressed and enriched in several human brain regions and 

developmental stages. Clustering analysis of these genes based on their expression levels showed a clear 

difference between fetal stage and the other developmental stages. There was no clear gender or brain 
region differences between samples. Further, functional analysis of these genes revealed that they 

participate in a variety of different and widely distributed functional pathways implicated with ADHD.  

From miRNA-target prediction analysis, we identified twenty miRNAs regulating the identified 

103 genes, and the expression pattern of these miRNAs was developmental stage dependent. These 

miRNAs were enriched in functional pathways and disease ontologies relevant to neurodevelopment. 

The knowledge of the expression pattern of potential ADHD candidate genes and miRNAs, which 
regulate these genes across different stages of brain development, is essential for understanding normal 

brain development and subsequent disease development of the brain. In addition, identification of 

miRNA-regulated ADHD candidate genes can be used to develop blood-based molecular markers to be 

investigated in future studies of ADHD patients.     

Keywords: Attention-deficit/hyperactivity disorder, ADHD, microRNA, epigenetics, 

neurodevelopment, transcription 
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1. Background 

Attention-deficit/hyperactivity disorder 

(ADHD) is the most common 

neuropsychiatric disorder in childhood 

affecting 5-6% of children, which often begins 

during childhood persisting into adulthood in 

the majority of patients(1, 2), and is associated 

with poor academic and social outcomes (3). 

The core areas of difficulties for subjects with 

ADHD are hyperactivity, impulsivity, and 

inattention over time and across situations 

(4),(5). The etiology of ADHD is still poorly 

understood, however; there are indications of 

genetic as well as environmental factors 

contributing to the development of the 

disorder, and epigenetic changes have been 

suggested to be involved. It also shares genetic 

risk factors with other neurodevelopmental 

disorders like autism, schizophrenia and 

epilepsy (6). Family studies have shown that 

ADHD runs in families (7), and twin studies 

indicate that the heritability of ADHD in 

children is 70-80% (8);(9). However, findings 

from molecular genetic studies thus far can 

only explain a small fraction of the 

heritability(10), indicating that ADHD risk 

variants will be of very small effect size and 

include multiple rare variants (8);(11). The 

disorder is associated with impaired social 

functioning, lower academic achievement, 

substance abuse and criminality. In addition, 

ADHD is associated with increased healthcare 

costs for patients and their family members. 

The disorder is thus of great societal concern, 

and increased knowledge of the etiology may 

lead to earlier diagnosis and improved 

treatment and health (12);(13);(14). 

Candidate gene association studies have 

focused on genes related to catecholamines, 

and meta-analyses have indicated that the 

most consistent findings are related to the 

dopaminergic and serotonergic systems (15). 

A recent meta-analysis of ADHD Genome-

wide association studies (GWAS) identified 

significant risk loci (12 genomic loci) located 

within or nearby genes involved in 

neurodevelopment processes (16). 

Accumulating evidence, however, indicate 

that rare mutations of larger effects may 

account for a substantial proportion of the 

heritability of complex disorders (17). Some 

of the missing heritability might be explained 

by gene-environment interaction and 

epigenetic mechanisms.  

There is a probable interplay between 

genetics, epigenetics and environmental 

factors that is far from understood. More 

knowledge concerning this interplay is likely 

to contribute to a better understanding of 

early-life exposures, maternal or paternal, and 

consequences for the health of the child later 

in life. By means of mouse models it has been 

shown that in utero exposure leads to changes 

which are persistent through several 

generations and they were most probably due 

to epigenetic rather than genetic mechanisms 

(18);(19);(20). Epigenetic modifications like 

DNA methylation, histone modification, 

chromatin remodeling, and microRNAs, are 

influenced by nutritional and environmental 

factors, and may regulate gene expression 

downstream of both environmental and 

genetic risk factors. Epigenetic changes in 

early life may influence disease susceptibility 

in later life, and mediation of environmental 

factors on epigenetic mechanism may have a 

key role in the onset and course of common 

neurological conditions, including ADHD.  

As being a part of the epigenetic 

modulators, miRNAs are abundant in the 

nervous system, where they are involved in 

neural development and are likely an 

important mediator of neuronal plasticity. 

MiRNAs’ role in neurodevelopmental 

diseases, both as diagnostic biomarkers as 

well as explaining basic disease etiology has 

come into focus.  Aberrant miRNA function 

has been linked to the etiology of several 

neurological disorders, including fragile X 

syndrome, schizophrenia, autism spectrum 
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disorders (ASD),  and Alzheimer disease 

(21);(22);(23);(24);(25);(26). The relationship 

between microRNA dysfunctions and 

neurological diseases is illustrated with fragile 

X mental retardation(21), and the absence of 

Fragile X mental retardation 1 protein 

(FMRP) impairs Dicer and RISC functions 

required for miRNA-mediated synaptic 

plasticity and dendritic development (21). 

Further, miRNA-mediated transcriptional 

regulation is dynamic and they play a role in 

the fine-tuning of protein translation, 

contributing to the molecular pathogenesis of 

neurodevelopmental disorders. A 

comprehensive understanding of how miRNA 

transcriptional response during human 

neurodevelopment is regulated is important. 

In recent years, there are studies investigating 

the role of miRNAs in ADHD (27);(28, 

29);(30);(31);(32);(33);(34). These studies 

provide preliminary evidence; however, most 

of these studies are underpowered and there is 

so far little overlap between the identified 

ADHD linked miRNAs.  

In order to understand pathogenesis 

mediated gene expression modulations, it is 

important to get a complete picture of gene 

expression regulation during normal human 

brain development, and how dysregulation of 

these processes contribute to the molecular 

pathogenesis of neurodevelopmental 

disorders, including ADHD. Thus, getting 

deeper insight into transcriptional regulation 

mediated by miRNAs that occur under normal 

neurodevelopment is essential for 

understanding the abnormal changes that may 

occur in the onset and course of common 

neurological conditions, including ADHD.  

The primary objectives of this study was 

i) to identify potential ADHD candidate genes 

by searching the literature and publicly 

available disease-gene databases; ii) to 

explore spatial and temporal transcriptional 

fluctuation of already identified ADHD 

candidate genes in normal developing human 

brain tissues, and iii) to identify miRNAs 

regulating these ADHD candidate genes and 

explore how these miRNAs are expressed in 

normal developing human brain tissues. 

Secondary objectives were to identify 

miRNAs that regulate ADHD associated 

genes, and the role of these miRNA regulators 

as potential early biomarkers of ADHD. The 

identified miRNAs will be investigated in an 

ongoing ADHD project. 

 

2. Methods 

 

2.1 Selection of potential ADHD candidate 

gene set and functional analysis 

To identify potential ADHD candidate 

genes, we downloaded all genes related to 

ADHD from the ADHDgene database (35), 

DisGeNET (36), and GeneCards 

(www.genecards.org) (37), and ADHD gene 

list from recent summary statistic of ADHD 

GWAS meta-analysis of European ancestry 

was obtained from the supplementary data of 

recent studies (38). We then compared the four 

gene lists and calculated intersecting genes. 

Shared genes among the four gene lists were 

selected as potential ADHD candidate gene 

set, and these genes were used in downstream 

analysis. Functional analysis of the identified 

ADHD gene set was performed using the gene 

set enrichments analysis tool GENEASE (39) 

to determine functional pathways relevant to 

the identified ADHD gene set. 

 

2.2 Expression pattern of ADHD candidate 

gene set 

The expression pattern of the selected 

ADHD candidate gene set was extracted from 

BrainSnap (https://www.brainspan.org/), an 

atlas of the developing human brain (40), and 

the details of tissue acquisition, processing, 

and RNA-sequencing can be found on the 

website. BrainSnap contains transcriptomic 

data categorized into different major brain 

developmental stages (RNA-seq data) from 

postmortem brains collected from individuals 

http://www.genecards.org/
https://www.brainspan.org/
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ranging from 5-7 post-conceptional weeks 

(pcw) up to 40 years of age. RNA-Seq 

expression data are available for 13 stages of 

development over 16 brain regions. First, the 

RNA-seq data of human brain region- and 

developmental stage samples was downloaded 

(Developmental Transcriptome: RNA-Seq 

Gencode v10 summarized to genes), and then 

the RPKM (reads per kilobase per million) of 

the selected ADHD candidate gene set was 

extracted from the RNA-seq data. We 

regrouped the original samples into five 

developmental stages (fetal (8-38 pcw), 

infancy (birth-12 month), childhood (1-11 

year), adolescence (12-19 year) and adulthood 

(21-40 year), respectively). The limma 

Bioconductor package (41) was used to 

compare these five groups and to identify 

genes significantly differentially expressed 

between the five developmental stages.  

 

2.3 ADHD gene set targeting miRNA 

prediction and functional network 

analysis. 

The Mienturnet-tool (microRNA-target 

enrichment and network-based analysis) (42) 

was used to predict the miRNAs targeting the 

identified ADHD gene set. We selected only 

experimentally validated miRNA-target 

interactions with strong evidence from the 

miRTarBase (43). The computed topological 

properties for each node in the miRNA-target 

interaction network was imported into the 

CytoScape v3.7.1 (44) to display the miRNA-

target interaction network. The identified 

miRNA-target pairs was further analyzed with 

miRmapper R-package (45) in order to 

identify the most dominant miRNAs or 

mRNAs in the miRNA-target network to find 

similarities between miRNAs based on 

commonly regulated genes. Further, the 

Mienturnet-tool offers the possibility to 

perform a functional enrichment analysis of 

the targets of selected miRNAs.  

2.4 Expression profile of the ADHD gene 

set targeting miRNAs  

The read counts of the small-RNA-seq 

data was downloaded from BrainSnap, and as 

RNA-seq data, we regrouped the original 

samples into four developmental stages 

(infancy (birth-12 month), childhood (1-11 

year), adolescence (12-19 year) and adulthood 

(21-40 year), respectively). The details of 

small RNA-seq data, i.e., tissue acquisition, 

processing, and small RNA-sequencing can be 

found on the website. The fetal stage samples 

were not included in the small-RNA-seq data. 

The edgeR Bioconductor package (46) was 

used to compare these four groups and 

identified miRNAs significantly differentially 

expressed between the four developmental 

stages. Then the expression pattern of the 

identified miRNAs targeting ADHD genes 

(from section 2.3) was extracted from the 

small-RNA-seq data and their expression 

pattern was evaluated.  

 

3 Results  

To identify potential ADHD associated 

genes, a search was conducted in public 

databases and literature.  ADHD associated 

genes were identified from curated databases 

and from supplementary data from a recent 

study (38). Based on such search, we 

constructed four gene lists and compared 

them. A gene was included in the potential 

ADHD candidate gene set if it was present in 

all four gene lists. From such analysis, we 

identified 103 shared potential ADHD 

candidate genes (Figure 1A and Table 1) and 

these genes were used in downstream analysis. 

It is however important to notice that the 

identified 103 genes did not necessarily reach 

genome-wide significance. To ascribe 

biological relevance to the selected 103 

ADHD gene set, we conducted a functional 

enrichment analysis using the GESEASE tool 

(39). The result of the functional pathway 

enrichment analysis is presented in Figure 1B. 

The top ten enriched signaling pathways 

represented by our 103 gene set were 
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neuroactive ligand-receptor interaction, 

dopaminergic synapse, synaptic vesicle cycle, 

cocaine addiction, calcium signaling pathway, 

cAMP signaling pathway, serotonergic 

synapse, glutamatergic synapse, alcoholism 

and circadian entrainment, respectively 

(Figure 1B) and most of these pathways are 

implicated with ADHD.  
 

Table 1. Potential ADHD candidate genes (n = 103 genes) 

Gene 

symbol Description 

Gene 

symbol Description 

ADRA1A Adrenoceptor Alpha 1A GRM8 Glutamate Metabotropic Receptor 8 

ADRA1B Adrenoceptor Alpha 1B GSK3B Glycogen Synthase Kinase 3 Beta 

ADRA2A Adrenoceptor Alpha 2A HK1 Hexokinase 1 

ADRA2B Adrenoceptor Alpha 2B HTR1A 5-Hydroxytryptamine Receptor 1A 

ADRA2C Adrenoceptor Alpha 2C HTR1B 5-Hydroxytryptamine Receptor 1B 

AK8 Adenylate Kinase 8 HTR1D 5-Hydroxytryptamine Receptor 1D 

ANK3 Ankyrin 3 HTR2A 5-Hydroxytryptamine Receptor 2A 

ARVCF ARVCF Delta Catenin Family Member IL16 Interleukin 16 

ASTN2 Astrotactin 2 IL1RN Interleukin 1 Receptor Antagonist 

ATP2C2 

ATPase Secretory Pathway Ca2+ Transporting 

2 ITGA1 Integrin Subunit Alpha 1 

ATXN1 Ataxin 1 ITGA11 Integrin Subunit Alpha 11 

BAIAP2 

BAR/IMD Domain Containing Adaptor Protein 

2 ITGAE Integrin Subunit Alpha E 

BCHE Butyrylcholinesterase ITIH3 Inter-Alpha-Trypsin Inhibitor Heavy Chain 3 

BDNF Brain Derived Neurotrophic Factor MAP1B Microtubule Associated Protein 1B 

CACNA1
C 

Calcium Voltage-Gated Channel Subunit 
Alpha1 C MC4R Melanocortin 4 Receptor 

CALY Calcyon Neuron Specific Vesicular Protein MOBP Myelin Associated Oligodendrocyte Basic Protein 

CDK20 Cyclin Dependent Kinase 20 MTHFR Methylenetetrahydrofolate Reductase 

CHRNA3 

Cholinergic Receptor Nicotinic Alpha 3 

Subunit MTNR1A Melatonin Receptor 1A 

CHRNA4 

Cholinergic Receptor Nicotinic Alpha 4 

Subunit NET1 Neuroepithelial Cell Transforming 1 

CHRNA7 

Cholinergic Receptor Nicotinic Alpha 7 

Subunit NGF Nerve Growth Factor 

CLOCK Clock Circadian Regulator NOS1 Nitric Oxide Synthase 1 

CNR1 Cannabinoid Receptor 1 NPSR1 Neuropeptide S Receptor 1 

CNTFR Ciliary Neurotrophic Factor Receptor NR3C2 Nuclear Receptor Subfamily 3 Group C Member 2 

COMT Catechol-O-Methyltransferase NR4A2 Nuclear Receptor Subfamily 4 Group A Member 2 

CPLX1 Complexin 1 NT5C2 5'-Nucleotidase, Cytosolic II 

CPLX2 Complexin 2 NTF3 Neurotrophin 3 

CSMD2 CUB And Sushi Multiple Domains 2 NTRK2 Neurotrophic Receptor Tyrosine Kinase 2 

DBH Dopamine Beta-Hydroxylase OPRM1 Opioid Receptor Mu 1 

DCDC2 Doublecortin Domain Containing 2 OXTR Oxytocin Receptor 

DCLK1 Doublecortin Like Kinase 1 PER2 Period Circadian Regulator 2 

DDC Dopa Decarboxylase PPP1R1B Protein Phosphatase 1 Regulatory Inhibitor Subunit 1B 
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DHCR7 7-Dehydrocholesterol Reductase PRTG Protogenin 

DIRAS2 DIRAS Family GTPase 2 PTPRN2 Protein Tyrosine Phosphatase Receptor Type N2 

DISC1 DISC1 Scaffold Protein SH2B1 SH2B Adaptor Protein 1 

DPP6 Dipeptidyl Peptidase Like 6 SLC1A3 Solute Carrier Family 1 Member 3 

DRD1 Dopamine Receptor D1 SLC6A1 Solute Carrier Family 6 Member 1 

DRD2 Dopamine Receptor D2 SLC6A2 Solute Carrier Family 6 Member 2 

DRD3 Dopamine Receptor D3 SLC6A3 Solute Carrier Family 6 Member 3 

DRD4 Dopamine Receptor D4 SLC6A4 Solute Carrier Family 6 Member 4 

DRD5 Dopamine Receptor D5 SLC9A9 Solute Carrier Family 9 Member A9 

EMP2 Epithelial Membrane Protein 2 SNAP25 Synaptosome Associated Protein 25 

FADS1 Fatty Acid Desaturase 1 SPOCK3 

SPARC (Osteonectin), Cwcv And Kazal Like Domains 

Proteoglycan 3 

FADS2 Fatty Acid Desaturase 2 STX1A Syntaxin 1A 

FTO 

FTO Alpha-Ketoglutarate Dependent 

Dioxygenase SYN3 Synapsin III 

GDNF Glial Cell Derived Neurotrophic Factor SYT2 Synaptotagmin 2 

GIT1 GIT ArfGAP 1 TPH1 Tryptophan Hydroxylase 1 

GPC6 Glypican 6 TPH2 Tryptophan Hydroxylase 2 

GRIN2A 

Glutamate Ionotropic Receptor NMDA Type 

Subunit 2A TRIM32 Tripartite Motif Containing 32 

GRIN2B 

Glutamate Ionotropic Receptor NMDA Type 

Subunit 2B TRIO Trio Rho Guanine Nucleotide Exchange Factor 

GRM1 Glutamate Metabotropic Receptor 1 VAMP2 Vesicle Associated Membrane Protein 2 

GRM5 Glutamate Metabotropic Receptor 5 ZNF804A Zinc Finger Protein 804A 

GRM7 Glutamate Metabotropic Receptor 7     

 

 

  A) 
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Figure 1. Identification of potential ADHD candidate gene set and functional analysis. A) 

Venn diagram of four ADHD gene list from curated databases and literature. The 103 shared genes 

are potential ADHD candidate genes and used in downstream analysis. The Venn diagram was 

drawn by InteractiVenn, a web-based tool (83). B) Top enriched pathways (adjusted p < 1x 10-5, 

Benjamini-Hochberg (BH) method). Functional pathway enrichment analysis of the selected 103 

ADHD gene set and the top ten most enrich pathways are presented. The enrichment analysis 

indicated that the identified 103 ADHD gene set were involved in a range of signaling pathways.  

 

To get insight into the transcriptional 

dynamics of the identified 103 ADHD 

candidate gene set in developing brain, we 

extracted the transcription data of these genes 

from BrainSnap (40). We performed principal 

component analysis (PCA) and multi-

dimensional scaling (MDS) on their 

transcription data. The analysis revealed that 

there was a clear developmental stage 

difference between samples, and samples 

from fetal stages clustered closer together than 

samples from other developmental stages 

(infancy, childhood, adolescences and 

adulthood stages) (Figure 2A and B). The 

observed differences of the gene expression 

pattern due to developmental stage variance 

contributes more than the other variables (e.g. 

gender or brain region) for these 103 ADHD 

candidate genes. We then conducted 

hierarchical clustering analysis in order to 

group samples from different developmental 

stages based on their transcript level 

similarity, and the hierarchical clustering 

analyses results were visualized in a 

dendrogram and are presented in Figure 2C. 

By visual inspection of the clustering 

dendrogram, we observed that fetal stage 

samples clustered close to each other; 
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however, there were a few samples from the 

fetal stages, which clustered together with the 

other developmental stage samples (Figure 

2C). We then compared the transcript level of 

the five developmental stages using limma 

package (41). From such analysis, we 

observed that there were many genes which 

are differentially expressed between the five 

developmental stages (Figure 2D), and more 

than 60 genes were differentially expressed 

between fetal stage samples and samples from 

the other developmental stages. This further 

confirms the clustering results where the fetal 

stage samples behave differently than samples 

from the other stages.    

 

A) 
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B) 
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D) 

 

Figure 2. The expression pattern of the 103 ADHD candidate genes in developing brain 

tissues. A) Principle component analysis (PCA) and B) multi-dimensional scaling (MDS) analysis 

of the 103 ADHD gene set separate samples from  fetal stages from the other development stages 

(infancy, childhood, adolescences and adulthood stages). Samples are color coded either by 

developmental stages, gender (F=female and M=male) or brain regions (A1C: primary auditory 

(A1) cortex; AMY: amygdala; CBC/CB: cerebellar cortex; CGE: caudal ganglionic eminence; 

DFC: dorsolateral prefrontal cortex; HIP: hippocampus; IPC: posterior inferior parietal cortex; 

ITC: inferior temporal cortex; M1C: primary motor (M1) cortex; MD: mediodorsal nucleus of the 

thalamus; MFC: medial prefrontal cortex; OFC: orbital prefrontal cortex; S1C: primary 

somatosensory (S1) cortex; STC: superior temporal cortex; STR: striatum; V1C: primary visual 

(V1) cortex and VFC: ventrolateral prefrontal cortex). C) Unsupervised hierarchical clustering 

analysis of the expression level of 103 genes after normalization and log2-transformation of the 

data. The hierarchical clustering analysis is based on similarities in gene expression. Samples are 

horizontally labeled based on the developmental stage they belong to. D) Comparison of the five 

developmental stages (fetal, infancy, childhood, adolescences and adulthood stages) to identify 

statistically significantly differentially expressed genes between the developmental stages (a gene 

is considered significantly expressed with FDR< 0.05 and fold change > 1.2).  
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To get a comprehensive picture of 

spatial-temporal expression pattern of the 103 

ADHD candidate gene set in human brain 

regions and developmental stages, we 

performed in silico analysis of the 103 ADHD 

candidate genes using CSEA-tool (47). The 

CSEA-tool calculated the tissue-specific 

enrichment score (pSI: specificity index 

statistic) and the brain tissue expression data 

used to calculate the pSI are from the 

BrainSpan transcriptomic data. We used a pSI 

(specificity index statistic) threshold of 0.05 in 

order to examine whether the 103 ADHD 

genes were enriched in specific human brain 

regions and developmental stages. We 

observed that the expression levels of the 103 

ADHD genes were significantly enriched in 

several brain regions and developmental 

stages (Figure 3A); i.e., significant enrichment 

in the cerebellum (late-fetal and mid-late 

childhood), hippocampus (early-infancy and 

mid-late childhood), striatum (early-infancy 

and early-late childhood, adolescence and 

young adulthood) and thalamus (early-infancy 

and mid-late childhood, adolescence and 

young adulthood). The genes were also 

enriched in the cortex of the adolescence 

developmental stage.  

 

Figure 3. Brain region and developmental enrichment analysis of the 103 ADHD gene set. 

The CSEA-tool was used to analyze the 103 ADHD gene set enrichment in specific human brain 

regions and developmental stages. The color codes represent the Benjamini-Hochberg (BH) 

corrected one-tailed Fisher's Exact test p-values, and shaded regions closer to the center of each 

hexagon indicate increasing tissue specificity. 
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MiRNAs are expressed in mammalian 

brains specifically and influence multiple 

circuits in the brain, suggesting their unique 

roles in neurodevelopment and brain function 

(48), and their involvement in anxiety, 

exploration, learning and memory has been 

reported (49). Further, a number of 

developmental and adult brain disorders are 

associated with abnormal changes in synaptic 

connectivity and plasticity, including fragile X 

syndrome and autism disorder (50). To 

identify miRNAs regulating the selected 103 

ADHD gene set and explore how these 

miRNAs expressed in normal developing 

human brain tissues, we first searched for 

miRNAs targeting the 103 ADHD genes using 

the Mienturnet-tool (42). Since each miRNA 

can regulate numerous target genes and 

therefore has the potential to alter multiple 

biochemical pathways, we selected only 

experimentally validated miRNA-target 

interactions with strong evidence from the 

miRTarBase (43). We were interested on 

miRNAs that target several genes, because 

miRNAs targeting the same genes may infer a 

broader range of target level alteration and 

they usually have similar target genes (51). 

Further, miRNAs that co-regulated similar 

target genes may probably have a greater 

influence in determining phenotypic outcomes 

and are more important in a global biological 

context than miRNAs that modulate just a few 

genes (45, 52). MiRNA target gene sharing 

principle is based on that if two miRNAs share 

a common set of target genes, they may 

probably influence or co-regulate similar 

biological pathway(s) (51). Therefore, we 

selected only validated miRNA-target 

interactions with strong evidence and at the 

same time regulate several target genes. Based 

on these criteria, we identified 20 miRNAs 

which target at least four or more genes 

(Figure 4A). We then used the miRmapper 

package to identify miRNAs that work 

cooperatively among the identified 20 

miRNAs, and the results are presented in 

Figure 4B. Four miRNAs (miR-17-5p, miR-

129-5p, miR-19a-3p and miR-19b-3p) 

clustered closer together and share similar 

target genes (Figure 4B and C). Further, miR-

17, miR-19a and miR-19b belongs to the miR-

17~92 family of miRNA clusters composed of 

three related, highly conserved, poly-cistronic 

miRNA genes that collectively encode for a 

total of fifteen miRNAs (53), and members of 

this family cooperate together to fine-tune 

signaling and developmental pathways. It has 

been reported that mutations or dysregulation 

of this miRNA-family contributes to the 

pathogenesis of a variety of human diseases, 

including cancer and congenital 

developmental defects (53). The fourth 

miRNA, miR-129-5p does not belong to the 

miR-17~92 family, however, miR-129-5p 

cluster with this family based on target gene 

similarity. Another two miRNAs (miR-15a-5p 

and miR-16-5p) were also clustered together 

by their target similarity (Figure 4B and C), 

and these two miRNAs belong to a highly 

conservative miR-15/107 family (54). The 

members of the miR-15/107 family consist of 

ten miRNAs and are strongly implicated in 

multiple human disorders. Furthermore, four 

miRNAs (miR-335-5p, miR-34a-5p, miR-

124-3p and miR-16-5p) had more than five 

targets (Figure 4A), and these miRNAs may 

have significant impact in the regulation of our 

ADHD genes.  
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Figure 4. MiRNAs targeting the 103 ADHD gene set. A) The identified miRNAs (N = 20 

miRNAs) targeting the ADHD gene set. Each miRNA targets at least four or more genes. B) A 

clustering dendrogram based on the similarity of the miRNAs’ Jaccard index values to each other 

analyzed by miRmapper package. C) Correlation plot with the miRNAs clustered by target 

similarity. The distances were based on the similarity of the miRNAs’ Jaccard index values to each 

other analyzed by miRmapper package. 

To get insight into the transcriptional 

response of the identified 20 miRNAs 

regulating our 103 ADHD candidate genes in 

developing brain, we extracted the miRNA 

transcriptional data of these miRNAs from 

BrainSnap (40), and as RNA-seq data, we 

regrouped the original samples into four 

developmental stages (infancy (birth-12 

month), childhood (1-11 year), adolescence 

(12-19 year) and adulthood (21-40 year)). The 

expression profiles of the 20 miRNAs are 

presented in Figure 5A, and we observed a 

developmental stage dependent expression 

level fluctuation for several miRNAs. We then 

compared the transcript level of the four 

developmental stages using edgeR package 

(46). From such analysis, we observed that 

there were many miRNAs which are 

differentially expressed between the four 

developmental stages (Figure 5B and C), and 

more than eleven miRNAs were differentially 

expressed between developmental stages. We 

then performed miRNA-target interaction 

network using topological properties 

computed for each node, and the resulting 

miRNA-target interaction network is 

presented in Figure 5D.  Only miRNAs with 

five or more connections were included in the 

network, and miR-335-5p was the most 

connected miRNA.  

h
s
a

-m
iR

-1
7

-5
p

h
s
a

-m
iR

-1
2

9
-5

p

h
s
a

-m
iR

-1
9

b
-3

p

h
s
a

-m
iR

-1
9

a
-3

p

h
s
a

-m
iR

-1
2

5
a

-3
p

h
s
a

-m
iR

-2
4

-3
p

h
s
a

-m
iR

-3
3

5
-5

p

h
s
a

-m
iR

-3
4

a
-5

p

h
s
a

-m
iR

-2
1

-5
p

h
s
a

-m
iR

-1
2

4
-3

p

h
s
a

-m
iR

-1
-3

p

h
s
a

-m
iR

-3
0

a
-5

p

h
s
a

-m
iR

-2
2

-3
p

h
s
a

-m
iR

-2
0

4
-5

p

h
s
a

-m
iR

-9
-5

p

h
s
a

-m
iR

-9
6

-5
p

h
s
a

-m
iR

-6
1

6
-5

p

h
s
a

-m
iR

-1
5

5
-5

p

h
s
a

-m
iR

-1
6

-5
p

h
s
a

-m
iR

-1
5

a
-5

p

hsa-miR-15a-5p

hsa-miR-16-5p

hsa-miR-155-5p

hsa-miR-616-5p

hsa-miR-96-5p

hsa-miR-9-5p

hsa-miR-204-5p

hsa-miR-22-3p

hsa-miR-30a-5p

hsa-miR-1-3p

hsa-miR-124-3p

hsa-miR-21-5p

hsa-miR-34a-5p

hsa-miR-335-5p

hsa-miR-24-3p

hsa-miR-125a-3p

hsa-miR-19a-3p

hsa-miR-19b-3p

hsa-miR-129-5p

hsa-miR-17-5p

0 0.4 0.8

Similarity



Nur Duale et al. Medical Research Archives vol 8 issue 9. September 2020          Page 16 of 26 

Copyright 2020 KEI Journals. All Rights Reserved       http://journals.ke-i.org/index.php/mra 

Finally, a functional enrichment 

analysis of the targets of identified 20 

miRNAs reveal that these miRNAs were 

involved in functional pathways relevant to 

neurodevelopment (alcoholism, circadian 

rhythm, cocaine addiction, dopaminergic 

synapse, glutamatergic synapse, long-term 

depression, synaptic vesicle cycle and 

neuroactive ligand-receptor interaction), and 

the most enriched disease ontologies includes 

attention deficit hyperactivity disorder, autism 

spectrum disorder, bipolar disorder, 

borderline personality disorder, mental 

depression, mood disorder and obsessive-

compulsive disorder.  
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D) 

 

Figure 5. The expression profile of miRNAs (N=20 miRNAs) targeting the ADHD gene set. 

A) The expression level of the 20 miRNAs. The expression levels are presented as average CPM 

(counts pre million) of brain tissue samples from each developmental stages. B) Comparison of the 

four developmental stages (infancy, childhood, adolescences and adulthood stages) to identify 

statistically significantly differentially expressed miRNAs between the developmental stages 

(miRNAs are considered significantly expressed with FDR< 0.05 and fold change > 1.2). C) The 

–log adjusted p-values of the 20 miRNA expression level comparison. D) miRNA-mRNA network. 

Ten miRNAs connected to five or more target genes are shown, and miR-335-5p is the most 

connected miRNA. Genes are colored with green color and miRNA with blue color. The miRNA-

mRNA network was constructed by CytoScape v3.7.1. 

 

4 Discussion 

Attention-deficit/hyperactivity disorder 

is a complex neuropsychiatric disorder, and is 

associated with increased healthcare costs for 

patients and their family members. The 

disorder is thus of great societal concern, and 

increased knowledge of the etiology may lead 

to earlier diagnosis and improved treatment. In 

this study, we evaluated the expression pattern 

of potential ADHD candidate genes and 

miRNAs that regulate these genes in normally 

developing human brain tissues from 

BrainSnap (40). We identified 103 ADHD 

candidate genes and these genes were 

expressed and significantly enriched in several 

brain regions and developmental stages such 

as cerebellum, hippocampus, striatum, 

thalamus and cortex which are implicated with 

ADHD. Brain studies of patients with ADHD 

have shown structural abnormalities in 

frontal-striatal and cerebellar circuitry, lower 

grey matter density, reduced total brain 
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volume and volume of some brain structures 

(55);(56);(57);(58);(59). 

Human brain development is a dynamic 

and complex process. It requires precise 

coordination of cellular and molecular events 

in order to achieve proper brain regions 

interconnectivity and specialization (60). In 

order to understand pathogenesis mediated by 

gene expression modulations, it is important to 

get a complete picture of the normal gene 

expression regulation during human brain 

development, and how dysregulation of these 

processes contribute to the molecular 

pathogenesis of neurodevelopmental 

disorders, including ADHD. Understanding of 

the transcriptional fluctuation of the identified 

ADHD candidate genes during 

neurodevelopment and their transcriptional 

regulation mediated by miRNAs targeting 

them during normal neurodevelopment is 

essential for understanding the abnormal 

changes that may occur in the onset and course 

of common neurological conditions, including 

ADHD. 

MiRNAs are expressed in mammalian 

brains specifically, suggesting the unique 

regulatory roles of miRNAs in neuronal 

development and are likely an important 

mediator of neuronal plasticity (48). Around 

70% of known miRNAs are expressed in the 

human brain, and there is a growing list of 

brain-specific miRNAs (61);(62);(63). It has 

also been reported that specific miRNAs are 

involved in learning and memory, exploration, 

and anxiety behavior (49). From a 

comprehensive analysis, we identified 20 

miRNAs regulating the 103 ADHD candidate 

genes (Figure 4). Some of the identified 20 

miRNAs have been implicated to regulate 

neurodevelopment; for instance, miR-9 and 

miR-124 are reported to be highly expressed 

in the brain (64);(65);(66);(67), and 

overexpression of miR-9 negatively regulates 

proliferation, promotes neuronal 

differentiation and migration, and controls 

neural stem cell differentiation 

(64);(68);(69);(70);(71);(72). Increased 

expression of miR-124 promotes neural 

differentiation and specification (73). Further, 

miR-125 and miR-129 also have important 

roles in synapse formation and plasticity 

(74);(75);(76). Three other miRNAs, miR-17, 

miR-19a and miR-19b, which belongs to the 

miR-17~92 family of miRNA clusters (53), 

cooperate together to fine-tune signaling and 

developmental pathways. Overexpression of 

the miR-17-92 cluster modulates PTEN 

protein levels and increases axonal growth 

(77);(53). Moreover, overexpression of miR-

34a alters hippocampal spinal morphology by 

modulating the expression of synaptic genes 

(synaptotagmin-1 and syntaxin-1A) (78). 

These illustrate that the identified 20 miRNAs 

targeting the 103 ADHD candidate genes have 

important roles in brain function and 

development. It will be interesting to elucidate 

the role of these miRNAs as potential 

biomarkers of ADHD. Among the identified 

20 miRNAs, two miRNAs (hsa-miR-22-3p 

and hsa-miR-24-3p) have been linked to 

ADHD (79), where aberrant expression levels 

of these miRNAs were observed in ADHD 

patients (79). A neuroprotective activity of 

miR-22-3p has been reported (80) and as well 

as its implication as a potential biomarker of 

schizophrenia (81).  Further, miR-24-3p has 

been shown to regulate neuronal 

differentiation by controlling hippocalcin 

(HPCA), a neuron-specific calcium-binding 

protein predominantly expressed in the 

nervous system (82). There are several reports 

on the role of miRNAs in ADHD (27);(28, 

29);(30);(31);(32);(33);(34); however, these 

studies are preliminary evidence and there is 

so far little overlap between the identified 

ADHD linked miRNAs.  

In a clinical setting, a minimally 

invasive diagnostic assay for early detection 

of ADHD is required to select optimal patient 

groups in clinical trials, monitor disease 

progression and response to treatment, and to 
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better plan patient clinical care. An advantage 

of using blood-based markers is the ease and 

possible frequency of collection of sample 

from patients. Circulating profiles of miRNAs 

have been shown to discriminate different 

tumor types, indicate staging and progression 

of the disease and to be useful as prognostic 

markers. Recently their role in 

neurodevelopmental diseases, both as 

diagnostic biomarkers as well as explaining 

basic disease etiology has come into focus. 

Most importantly, in an ongoing project, we 

are investigating these miRNAs in plasma 

samples from cord blood of ADHD cases and 

matched controls to assist in the prediction and 

early diagnosis of ADHD. Identification of 

dysregulated miRNAs in cord blood plasma 

samples may uncover associations between 

perinatal (early life) environmental stressors 

and ADHD. 

In conclusion, this study identified 103 

potential ADHD candidate genes and their 

regulating miRNAs. These genes and the 

regulating miRNAs were enriched in 

functional pathways and disease ontologies 

implicated with neurodevelopmental 

disorders, including ADHD.  The knowledge 

of the expression pattern of potential ADHD 

candidate genes and miRNAs, which regulate 

these genes across different stages of brain 

development, is essential for understanding 

normal brain development and their 

implication to brain disease development. 

Identification of miRNA-regulated ADHD 

candidate genes can be used to develop blood-

based molecular markers to be investigated in 

future studies of ADHD patients.     
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