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Coherent photoproduction of π0-meson from the deuteron is investigated within an approach
which includes the reaction amplitudes of the impulse approximation, two-step process with in-
termediate πN- and ηN-rescattering, and the higher order terms in the multiple scattering series
for the intermediate ηNN interaction. This approach is based on realistic separable representa-
tions of the driving two-body interaction in the πN , ηN , and NN subsystems. For the elementary
γN → πN operator, the unitary isobar model MAID2007 is used which describes well the elemen-
tary reaction. The radial deuteron wave function in the initial and final states are taken from the
realistic CD-Bonn potential. Results for unpolarized and polarized cross sections as well as for all
possible polarization observables with polarized photons and/or oriented deuterons are predicted
and compared with available data, and differences with other theoretical models are analyzed. The
contribution of γd → π0d to the deuteron spin asymmetry is calculated and its contribution to
the Gerasimov-Drell-Hearn (GDH) integral is explicitly evaluated by integration up to a photon
lab-energy of 900 MeV. The helicity E-asymmetry is also estimated. This work is motivated by the
measurements of the CLAS Collaboration at Jefferson laboratory, where a cusp-like structure in the
energy dependence of the differential cross section has been observed near η-production threshold
at extremely backward pion angles, and the measurements of the VEPP-3 electron storage ring,
where very recent data for the tensor-deuteron spin asymmetries have been measured. The effect
of intermediate ηNN three-body interaction is significant in certain spin asymmetries, specially at
extreme backward pion angles. It turns out that the inclusion of a full ηNN three-body contribu-
tion is quite essential. At forward angles, the contribution from the pure impulse approximation
is dominated. The sensitivity of the obtained results to the elementary γN → πN amplitude and
the choice of the NN potential model governs the deuteron wave function is investigated and con-
siderable dependences are found. Compared to the experimental data from CLAS Collaboration
for differential cross section, from YerPhi Collaboration for the linear photon asymmetry, and from
VEPP-3 electron storage ring for the tensor target asymmetries, sizeable discrepancies are found.
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I. INTRODUCTION AND PHYSICS

MOTIVATION

The determination of the dynamics underlying single
pion production has been a major challenge in hadronic
physics for several decades. However, despite this long
history and large efforts in both theory and experiment,
the reaction mechanisms are still far from being under-
stood, mainly because of the contributions from a sub-
stantial number of hadronic resonances which are difficult
to disentangle.
New perspectives for the study of these resonances

have been opened by the possibility of performing experi-
ments using linearly or circularly polarized photon beams
and polarized targets, e.g. at MAMI in Mainz and ELSA
in Bonn (Germany), at JLab in Newport News and LEGS
in Brookhaven (USA), at MAX-Lab in Lund (Sweden),
at SPring-8 in Osaka and ELPH in Tohoku University
(Japan), at GRAAL in Grenoble (France), and at VEPP-
2 and VEPP-3 electron storage rings in Novosibirsk (Rus-
sia). A comprehensive overview concerning the status of
these experiments is given in Ref. [1]. By careful se-
lection of the new observables, enhanced sensitivities to
specific electromagnetic multipoles and, consequently, to
a few selected hadronic resonances are obtained. The
use of polarization degrees of freedom allows one also to
obtain complete information on all possible reaction ma-
trix elements. Furthermore, polarization observables are
expected to be sensitive to important dynamical details
and thus allow in general much more stringent tests of
theoretical models.
Therefore, a lot of valuable information about the

structure of nucleons and nuclei can be obtained, in par-
ticular, in high precision experiments on pion photopro-
duction, including measurements of polarization observ-
ables. Regarding pion photoproduction from the nucleon,
the most understood channels are the proton ones since a
relatively large number of experimental data are available
for these channels at energies up to 2 GeV (see the SAID
database [2]). Meanwhile, the study of neutron chan-
nels is needed to complete our understanding about pion
photoproduction from the nucleon. Since free neutron
targets are not available to study the neutron channels,
one needs to use light nuclei such as the deuteron or 3He
as effective neutron targets. The deuteron is particularly
well suited because of its small binding energy and its
simple structure.

Electromagnetic pion production from the deuteron is
of fundamental interest and thus constitute a major topic
in medium energy nuclear physics. One of the interesting
aspects is that it can provide complementary informa-
tion on the elementary pion production process on the
nucleon. Studying pion production from the deuteron
can also give information on pion production on off-shell
nucleons. This is of course important for the study of
pion production on all other nuclei as well. With re-
spect to pion production from the deuteron, the coherent
and incoherent reactions are worth to be studied. Co-
herent pion production from the deuteron may be used
as an isospin filter and is especially sensitive to the co-
herent sum of the γp → π0p and γn → π0n ampli-
tudes. On the other hand, incoherent pion production
from the deuteron may be used to obtain information
about neutron cross section in quasifree kinematics. In
this work, we focus our attention on the coherent π0-
photoproduction reaction from the deuteron in the en-
ergy region near the η-production threshold. This study
is motivated by the measurements of the CLAS Collab-
oration at Jefferson Laboratory [3, 4] for the differential
cross section, the YerPhi Collaboration [5] for the linear
photon asymmetry, and the VEPP-2 and VEPP-3 elec-
tron storage rings [6–8] for the tensor target asymmetries.
This study is of interest both for development of theory
and future experimental investigations.

Previously, coherent π0-photoproduction from the
deuteron has been studied extensively at photon lab-
energies below 400 MeV as a source of information on
the elementary π0-photoproduction on the neutron [9–
15]. This reaction is characterized by high momentum
transfer at large pion center-of-mass (c.m.) production
angles. Thus, one expects that rescattering mechanisms,
such as two-step process, dominate the reaction dynam-
ics at this kinematics and the reaction can be used to
study these. The reaction γd→ π0d has been first stud-
ied in Ref. [9] by including the contribution from pion
rescattering with charge-exchange contributions. This ef-
fect was then verified in studies of this reaction in the
π-threshold region [10]. An approach of NN −N∆ cou-
pled channels for describing the reaction γd→ π0d in the
∆(1232)-resonance region was used in Ref. [11], whereas
relativistic Feynman diagrams have been evaluated in an-
other approach developed in [12]. Blaazer et al. [13]
studied rescattering corrections to all orders by solving
Faddeev equations of the πNN system. They have con-
cluded that the contributions of the neutron and the pro-
ton cannot be separated because of the charge-exchange
rescattering of the pion. Using a microscopic approach
based on the Kerman-McManus-Thaler (KMT) multiple
scattering theory [14] in momentum space, Kamalov et

al. [15] have studied the reaction γd → π0d in the
∆(1232)-resonance region in a coupled channel approach.

The reaction γd → π0d is quite well understood at
energies between π-threshold and the ∆(1232) resonance
region. But this reaction is not well understood at higher
energies, because the resonances and mechanism of mul-
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tiple scattering play an important role for description of
the process. For more than a decade, the CLAS Collabo-
ration has been carrying out intense experimental studies
aimed at the investigation of the reaction γd→ π0d near
the η-production threshold at backward c.m. pion an-
gles [3, 4]. It was found that the unpolarized differential
cross section showed at extreme backward pion angles an
indication of a cusp-like structure between 600 and 800
MeV. This nontrivial energy dependence of the differ-
ential cross section was explained in [16] within a model
which based on the impulse approximation (IA) and first-
order rescattering approximation with intermediate pro-
duction of both π- and η-mesons (henceforth denoted by
FOR). It was demonstrated that the first-order rescat-
tering with intermediate ηN -rescattering dominates over
IA and intermediate πN -rescattering, and can explain
the cusp structure experimentally observed by the CLAS
Collaboration [3, 4]. Later on, this effect was analyzed
in Ref. [17] on the basis of a theoretical model which
includes, in addition to the IA and FOR, the full dynam-
ics in the intermediate ηNN three-body system only in
the s-wave state 1S0 [Jπ = 0−, T = 1] (in what fol-
lows denoted by TBM). Results for only the unpolarized
differential cross section were given in [17]. It was con-
cluded that a three-body treatment of the intermediate
ηNN interaction is of special importance.

We would like to emphasize that the calculations of
Refs. [16, 17] do not explain the features of entire set of
available data. The differential cross section was found to
be revealed remarkable differences even if the rescattering
effects are included. Furthermore, none of these theoreti-
cal studies consider polarization observables for the reac-
tion γd→ π0d near the threshold of η-production and/or
investigate the sensitivity of results to the elementary
γN → π0N amplitude and to the choice of NN poten-
tial model governs the deuteron wave function. Indeed,
polarization observables constitute much more stringent
tests of theoretical models, being more sensitive to small,
but interesting amplitudes.

Therefore, in Ref. [18] we have considered the reac-
tion γd→ π0d in the pure IA with special emphasize on
polarization observables. This work was improved and
extended in Refs. [19, 20] to study the influence of FOR
on differential and total cross sections as well as on polar-
ization observables. The justification for this work was
to investigate the influence of two-body process on po-
larization observables which, to the best of our knowl-
edge, had not been considered before in the literature in
the kinematics of the current situation. It was reported
that the differential cross section as well as polarization
observables are influenced by the inclusion of two-step
process. In many cases, the deviation among results ob-
tained using the pure IA alone and with inclusion of FOR
was found to be large. Nevertheless, perturbative mod-
els, like two-body process approximation noted in Refs.
[16, 19, 20], where only the leading order terms are kept
in the multiple scattering series, are unable to reproduce
the real dynamics of the intermediate ηNN system. In

addition, the comparison of theoretical predictions and
the experimental data from [3, 4, 21] for the differential
cross section in Ref. [20] as well as in the previous study
of Ref. [17] gave clear indication that a genuine three-
body treatment of the intermediate ηNN interaction is
required. This effect can not be described within the per-
turbative approach and requires three-body formalism.

Recently, the role of complete ηNN three-body calcu-
lation on various observables for the reaction γd → π0d
near the η-production threshold at backward c.m. pion
angles was investigated in Refs. [22–28]. Results for un-
polarized differential and total cross sections as well as
for all possible polarization observables with polarized
photons and/or oriented deuterons were given in said
work. Also, the sensitivity of results to the elementary
γN → π0N amplitude and the NN potential model gov-
erns the deuteron wave function was investigated. The
main concern of this work was to see to what extent
the full dynamics in the intermediate ηNN interaction
will influence the dynamical properties of the γd → π0d
reaction. It was found that the effect of intermediate
ηNN interaction is significant in certain spin asymme-
tries at extreme backward pion angles. The interference
of the pure IA and complete three-body calculation was
found to be quite important for understanding the re-
action dynamics. In addition, the deviation among re-
sults obtained using different elementary amplitudes and
deuteron wave functions was very large.

In the following, we would like to explain the main dif-
ferences between the calculation presented in Ref. [24]
and the previous one given in Ref. [17]. First of all, the
author of Ref. [17] was used for the elementary γN →
πN amplitude the unitary isobar model MAID2003 [29],
while the extended version MAID2007 [30] is used in [24].
The latter is well adopted for predictions and analysis of
the observables in pion photo- and electroproduction. It
describes the elementary production amplitude in a con-
sistent way and provides a well-defined transition from
the elementary process to the nuclear process. The sen-
sitivity of the results for differential and total cross sec-
tions as well as for polarization observables with inclusion
of the full dynamics in the intermediate ηNN system to
the elementary γN → πN amplitude and the deuteron
wave function was investigated in [22–26], but this has
not been studied in Ref. [17]. To the best of our knowl-
edge, this has not been done previously in the current
kinematics. In Ref. [17], the results for differential cross
section was compared with the, at that time, preliminary
data from CLAS Collaboration [3], but our calculations
presented in [22–26] are compared with the published
version of CLAS data [4]. In Refs. [22–26], we also inves-
tigated the role of three-body effect in the intermediate
ηNN interaction on polarization observables, but there
are no calculations for these observables were given in
Ref. [17]. Indeed, the influence of rescattering effects on
polarization observables may be an important question.
Finally, the author of Ref. [17] gives no total cross sec-
tion results. We will return to this point in section III
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(subsection III L).

Experimental data on the γd→ π0d observables with a
polarized photon beam and/or a polarized deuteron tar-
get exist only for the linear photon asymmetry Σ and the
tensor target spin asymmetries T2M (M=0,1,2). The lin-
ear photon Σ asymmetry has been measured at θ=130◦

in the c.m. system by the YerPhi Collaboration in Yere-
van [5]. With regard to the deuteron spin asymmetries,
the tensor target asymmetries T2M (M=0,1,2) have been
measured so far only at the VEPP-2 and VEPP-3 elec-
tron storage rings in Novosibirsk [6]. In the recent years,
the tensor deuteron spin asymmetry T20 has been mea-
sured for a photon energy range 200-600 MeV and for a
c.m. pion angle range 90◦-140◦ [7, 8]. A theoretical un-
derstanding of these experimental data may provide new
information about the pion photoproduction amplitude
on the free neutron, which is not well known yet, but is re-
quired for a complete understanding of the ∆-excitations
in the pion photoproduction process. To the best of our
knowledge, there are no photon-deuteron spin asymme-
tries in the γd→ π0d process have been measured yet.

The calculations presented in this review are of high
interest because, on the one hand, it provides an impor-
tant test of our understanding of the elementary neutron
amplitude in the absence of a free neutron target. On the
other hand, we would like to see whether the cusp struc-
ture observed in the differential cross section at back-
ward direction by the CLAS Collaboration [3, 4] can be
explored via polarization observables.

This review is structured as follows. In the next sec-
tion we briefly outline the theoretical model for coherent
photoproduction of π0-meson from the deuteron. The
kinematical framework used for our calculation of the
γd → π0d reaction is given in this section. Formal ex-
pressions for the unpolarized cross section and various
polarization observables are also given section II. The
essential ingredients for the calculation of the scattering
matrix in the pure IA and with the inclusion of rescatter-
ing contributions are also described. The results on the
unpolarized differential and total cross sections as well as
on various polarization observables for the γd→ π0d re-
action are presented and discussed in section III together
with a comparison with available experimental data and
other theoretical models. The last section IV is devoted
to conclusions and outlook. Throughout this work we
use natural units ~ = c = 1.

II. THE THEORETICAL MODEL

A. Kinematics and Cross Section

As a starting point, we briefly outline the kinematic
framework for coherent π0-photoproduction from the
deuteron which contains only two particles in the initial
and in the final states. The general form of the two-body

reaction is

a(pa) + b(pb) → c(pc) + d(pd) , (1)

where pi = (Ei, ~pi) denotes the four-momentum of par-
ticle “i” with i ∈ {a, b, c, d}.
Following the conventions of Bjorken and Drell [31],

the general form for the differential cross section of a
two-particle reaction in the c.m. system is given by

dσ

dΩc

=
1

(2πW )2
pc
pa

EaEbEcEd

FaFbFcFd

1

s

×
∑

µdµcµbµa

∣∣Mfi
µdµcµbµa

(~pd, ~pc, ~pb, ~pa)
∣∣2 (2)

with Mfi
µdµcµbµa

as reaction matrix, µi denoting the spin
projection of particle “i” on some quantization axis, and
Fi is a factor arising from the covariant normalization of
the states and its form depends on whether the particle is
a boson (Fi = 2Ei) or a fermion (Fi = Ei/mi), where Ei

and mi are its energy and mass, respectively. The factor
s = (2sa + 1)(2sb + 1) takes into account the averaging
over the initial spin states, where sa and sb denote the
spins of the incoming particles a and b, respectively. If
particle a is a real photon, then sa = 1/2 because the
real photon is a boson with two polarization states. All
momenta are functions of the invariant mass of the two-
body system W , i.e. pi = pi(W ), where W = Ea +Eb =
Ec + Ed.
Now, we focus on coherent π0-photoproduction from

the deuteron

γ(q,~ǫλ) + d(d) → π0(k) + d(d′) , (3)

where q = (Eγ , ~q), k = (Eπ, ~k), d = (Ed, ~d), and d′ =

(E′
d,
~d′) denote the four-momenta of the incident photon,

outgoing pion, initial and final deuterons, respectively.
The circular polarization vector of the incoming photon
is defined by ~ǫλ with λ = ±1. The Fi factor is given by

Fa = 2Eγ , Fb = 2Ed, Fc = 2Eπ, Fd = 2E′
d (4)

and therefore one finds s = 6 taking into account the
averaging of the cross section over the initial two possi-
ble polarizations of the real photon and the three spin
projections of the deuteron. For the deuteron states, a
non-covariant notation is used which removes the stan-
dard additional factors 1/2Ed and 1/2E′

d.
For the description of cross sections and polarization

observables, we consider the reaction (3) in the photon-
deuteron (γd) c.m. frame. There, we choose the z-axis
pointing in the direction of the incoming photon momen-
tum ~q (~ez = q̂ = ~q/q) which also serves as quantiza-
tion axis for the deuteron spin states. The direction of

the outgoing meson momentum ~k is characterized by the

spherical angles (θ, φ) with cos θ = k̂ · q̂. It defines to-
gether with the photon momentum the reaction plane.
The geometry is shown in Fig. 1. If the incoming pho-
ton beam is not linearly polarized, then the x-axis may
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dθ

φφd
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d

kθ

orientation
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FIG. 1: Kinematical variables of the coherent π0-
photoproduction reaction from the deuteron in the γd c.m.
frame.

be chosen arbitrarily, as there is no dependence on the
angle φ.
Using standard normalization of particle states, the

unpolarized differential cross section of the reaction γd→
π0d in the c.m. system is then given from (2) by

dσ

dΩπ

=
K
6

∑

mdλm
′

d

∣∣∣Mfi
mdλm

′

d

(~q,~k)
∣∣∣
2

, (5)

where md and m′
d are the initial and final deuteron spin

projections, respectively. The kinematic factor K is given
in the γd c.m. frame by

K =
1

16π2

k

q

EdE
′
d

W 2
γd

, (6)

where the initial and final deuteron energies are given
by Ed =

√
q2 +M2

d and E′
d =

√
k2 +M2

d , respectively,
with Md as deuteron mass. The c.m. three-momenta of
the photon and the pion are given by ~q and ~k, respec-
tively. The absolute values of these quantities are given
as functions of the photon energy in the laboratory frame
by

q =
1

2Wγd

(W 2
γd −M2

d ) = Eγ (7)

and

k =

√
[W 2

γd − (Md −mπ)2][W 2
γd − (Md +mπ)2]

2Wγd

.(8)

Moreover, the invariant energy of the γd system is given
as

Wγd = Eγ + Ed = |~q|+
√
q2 +M2

d ,

= Eπ + E′
d =

√
k2 +m2

π +
√
k2 +M2

d , (9)

where mπ is the pion mass.

B. Definition of Polarization Observables

The cross section for arbitrary polarized photons and
initial deuterons can be computed for a given M-matrix

by applying the density matrix formalism similar to that
given for deuteron photodisintegration [32]. All observ-
ables for coherent π0-photoproduction from the deuteron
have the general form

O = K
∑

m̃′

d
λ̃m̃d

∑

m′

d
λmd

M∗
m̃′

d
λ̃m̃d

Ωm̃′

d
m′

d
Mm′

d
λmd

× ργ
λλ̃
ρdmdm̃d

, (10)

where ργ and ρd are the density matrices for incoming
photon and initial deuteron polarization, respectively. A
polarimeter for final deuterons would be formally de-
scribed by the operator Ω. However, in this work, we
will always set Ω = 1, i.e., we do not consider any polar-
ization analysis of the outgoing deuteron.
The direction of the x-axis is defined by the density ma-

trix of the photon polarization with respect to the basis
of circular polarization states. The initial state density
matrix of the photon has the form [33]

ργλλ′ =
1

2

(
δλλ′ + ~P γ · ~σλλ′

)
, λ, λ′ = ±1 , (11)

where ~σ denotes the Pauli spin operator. Here, |~P γ |
describes the total degree of polarization, P γ

z = P γ
c

the degree of circular photon polarization and P γ
l =√

(P γ
x )2 + (P γ

y )2 the degree of linear photon polarization.
By a proper rotation of the frame of reference around
the z-axis, i.e., around the photon momentum ~q one can
choose the x-axis in the direction of maximum linear po-
larization, i.e., P γ

x = −P γ
l and P γ

y = 0. Thus, we have
explicitly [33]

ργλλ′ = (1 + λP γ
c ) δλλ′ − P γ

l δλ,−λ′ e2iλφ . (12)

A possible target orientation is described by the
deuteron density matrix ρd which can be expressed in
terms of the irreducible spin operators τ [I] with respect
to the deuteron spin space [33]

ρdmd m′

d

=
1

3

2∑

I=0

I∑

M=−I

(−)M Î 〈1md|τ [I]M |1m′
d〉P d

I−M ,

(13)
where P d

IM characterizes the initial state polarization,
P d
00 = 1, and P d

1−M and P d
2−M describe vector and

tensor polarization components of the deuteron, respec-
tively. Furthermore, we use throughout the notation
Î =

√
2I + 1. The spin operators are defined by their

reduced matrix elements

〈1||τ [I]||1〉 =
√
3 Î for I = 0, 1, 2 . (14)

In view of the experimental methods for orienting
deuterons, it is sufficient to assume that the deuteron
density matrix is diagonal; the elements with md 6= m′

d

will therefore vanish, with respect to a certain orientation

axis ~d. This axis is characterized by spherical angles θd
and φd with respect to the coordinate system associated
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with the scattering plane in the γd c.m. frame. Then,

one has with respect to ~d as quantization axis

ρdmd m′

d

= pmd
δmd m′

d
, (15)

where pmd
denotes the probability for finding the

deuteron in a state |1md〉 with respect to an orienta-
tion axis parallel to the z-axis, the orientation parame-
ters have a particularly simple form [33]

P d
I M (~d ) = P d

I δM0 , (16)

where the orientation parameters P d
I are related to the

pmd
by

P d
I =

√
3 Î
∑

md

(−)1−md

(
1 1 I
md −md 0

)
pmd

= δI0 +

√
3

2
(p1 − p−1) δI1

+
1√
2
(1 − 3 p0) δI2 . (17)

The orientation parameters with respect to the photon
momentum as quantization axis are obtained by the ro-
tation

P d
IM (~z ) = P d

I D
I
0M (0,−θd,−φd)

= P d
I e

iMφddIM0(θd) , (I = 1, 2) , (18)

where DI
0M denotes a rotation matrix [34, 35] describing

the transformation of irreducible tensors under a spatial
rotation, djmm′ denotes a small rotation matrix. Corre-
spondingly, the deuteron density matrix with the basis
states |1md〉 becomes

ρdmd m′

d

= 〈1m′
d | ρd | 1md〉

=
1√
3
(−)1−md

2∑

I=0

P d
I

I∑

M=−I

Î

×
(

1 1 I
m′

d −md M

)
e−iMφddIM0(θd) , (19)

where the symbol in round brackets denotes the Wigner
3j-symbol for which we use the convention of Edmonds
[35]. This means, the deuteron target is characterized
by four parameters, namely the vector and tensor polar-
ization parameters P d

1 and P d
2 , respectively, and by the

orientation angles θd and φd.

Formal expressions for the differential cross section in
coherent pseudoscalar meson photoproduction from an
oriented deuteron target have been given in [11, 13] in
terms of beam, target and beam-target spin asymmetries.
Here, we follow the more general approach of [36]. The
general form of the differential cross section can be de-
scribed by the unpolarized differential cross section and

various spin asymmetries as follows

dσ

dΩ
=

dσ0
dΩ

[
1 + P γ

l

{
Σ cos 2φ

+

2∑

I=1

P d
I

I∑

M=−I

T l
IM cos[ψM − δI1

π

2
] dIM0(θd)

}

+

2∑

I=1

P d
I

I∑

M=0

(
TIM cos[M(φd − φ)− δI1

π

2
]

+P γ
c T

c
IM sin[M(φd − φ) + δI1

π

2
]
)
dIM0(θd)

]
,

(20)

where ψM = M (φd − φ) + 2φ. This expression defines
the unpolarized differential cross section dσ0/dΩ and the
various photon, deuteron, and photon-deuteron asymme-
tries Σ, TIM , T c

IM , and T l
IM as functions of the scattering

angle θ. In order to express these observables in terms of
the reduced t-matrix, it is convenient to define, in com-
plete analogy to the procedure for deuteron photodisin-
tegration in Ref. [32], the two quantities

VIM =
K√
3
Î
∑

mdm
′

d

(−)1−md

(
1 1 I
m′

d −md M

)

×
∑

m′′

d

t∗m′′

d
1m′

d

tm′′

d
1md

, (21)

and

WIM = − K√
3
Î
∑

mdm
′

d

(−)1−md

(
1 1 I
m′

d −md M

)

×
∑

m′′

d

t∗m′′

d
1m′

d

tm′′

d
−1md

. (22)

Then, the unpolarized differential cross section and var-
ious spin asymmetries can be derived as follows [11]:
(i) The unpolarized differential cross section:

dσ0
dΩ

= V00 . (23)

(ii) The photon asymmetry for linearly polarized photons
and unpolarized deuterons:

Σ
dσ0
dΩ

= W00 . (24)

(iii) The target asymmetry for vector polarized deuterons
and unpolarized photons:

T11
dσ0
dΩ

= 2ℑmV11 . (25)

(iv) The target asymmetries for tensor polarized
deuterons and unpolarized photons:

T2M
dσ0
dΩ

= (2− δM0)ℜeV2M , for 0 ≤M ≤ 2 .(26)
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(v) The beam-target double spin asymmetries for circu-
larly polarized photons and vector polarized deuterons:

T c
1M

dσ0
dΩ

= −(2− δM0)ℜeV1M ,

for 0 ≤M ≤ 1 . (27)

(vi) The beam-target double spin asymmetries for circu-
larly polarized photons and tensor polarized deuterons:

T c
2M

dσ0
dΩ

= −(2− δM0)ℑmV2M ,

for 0 ≤M ≤ 2 . (28)

(vii) The beam-target double spin asymmetries for lin-
early polarized photons and vector polarized deuterons:

T l
1M

dσ0
dΩ

= iW1M , for − 1 ≤M ≤ 1 . (29)

(viii) The beam-target double spin asymmetries for lin-
early polarized photons and tensor polarized deuterons:

T l
2M

dσ0
dΩ

= W2M , for − 2 ≤M ≤ 2 . (30)

Because the quantity VI0 is real according to the fol-
lowing property under complex conjugation

V∗
IM = (−)M VI−M , (31)

the asymmetries T10 and T c
20 vanish identically. We

would like to point out that in extremely forward and
backward pion emission, i.e. for θ = 0 and π, the follow-
ing spin asymmetries have to vanish

Σ = 0 ,

TIM = 0 for M 6= 0 ,

T c
IM = 0 for M 6= 0,

T l
IM = 0 for M 6= 2 , (32)

because in that case the differential cross section cannot
depend on the azimuthal angle φ, since at θ = 0 or π the
angle φ is undefined or arbitrary. For completeness, we
list in Appendix A the explicit expressions for unpolar-
ized differential cross section and various spin asymme-
tries in terms of the reduced t-matrix elements.
The spin asymmetry with respect to circularly polar-

ized photons and the deuteron spin oriented parallel (P)
and antiparallel (A) to the photon spin is related to the
beam-target double spin asymmetry T c

10 according to [33]

d(σP − σA)

dΩ
=

√
6
dσ0
dΩ

T c
10 . (33)

The asymmetry T c
10 is of special interest, because it is

related to the spin asymmetry σP −σA which determines
the Gerasimov-Drell-Hearn (GDH) sum rule [37].
Finally, the general form of the total cross section with

inclusion of photon and deuteron polarization effects is

obtained from (20) by integrating dσ/dΩ over the pion
spherical angle dΩ and reads [33]

σ(P γ
l , P

γ
c , P

d
1 , P

d
2 ) = σ0

[
1 + P d

2 T̃20
1

2
(3 cos2 θd − 1)

+P γ
c P

d
1 T̃

c
10 cos θd

+P γ
l P

d
2 T̃

l
22 cos(2φd)

√
6

4
sin2 θd

]
.

(34)

It is clear that in this form only a few spin asymme-
tries survive. The unpolarized total cross section σ0 and

the corresponding spin asymmetries T̃20, T̃
c
10 and T̃ l

22 are
given by

σ0 =

∫
dΩ

dσ0
dΩ

, (35)

σ0 T̃20 =

∫
dΩ

dσ0
dΩ

T20 , (36)

σ0 T̃
c
10 =

∫
dΩ

dσ0
dΩ

T c
10 , (37)

σ0 T̃
l
22 =

∫
dΩ

dσ0
dΩ

T l
22 . (38)

C. The γd → π0d Amplitude

To obtain the scattering M-amplitude of coherent π0-
photoproduction from the deuteron, one may start with
the amplitude of the pure IA, i.e., the one-body contribu-
tion, to which the contributions from FOR and TBM are
added. A diagrammatical overview of these three contri-
butions which are considered in the present work is given
in Fig. 2. Diagrams (a), (b), and (c) in Fig. 2 describe
the pure IA, the contribution from FOR, and the addi-
tional contribution from TBM, respectively. In order to
avoid double counting, diagrams (d) and (e) in Fig. 2
are removed from the three-body amplitude since they
possess the same topology as that already included in di-
agrams (a) and (b). For the calculation of diagrams (c),
(d), and (e) only the s-wave state 1S0 (Jπ = 0−, T = 1)
is considered in the present work. In addition, the TS11

amplitude of photoproduction of the S11(1535)-resonance
from the deuteron (see Fig. 3 for its diagrammatic rep-
resentation) is calculated only in the s-wave state 1S0

(Jπ = 0−, T = 1). It should be noted that diagrams
when the elementary operators act on nucleon ’2’ are not
shown in Figs. 2 and 3 but are included in the present
calculations. In the calculations of the present work, each
diagram shown in Figs. 2 and 3 goes accompanied by the
diagram obtained by the exchange N1 ↔ N2.
We would like to mention that possible contributions

from two-nucleon mechanisms to the scattering ampli-
tude are neglected. Thus, the treatment of the M-
matrix is completely analogous to previous work on co-
herent π0-photoproduction from the deuteron [17], but it
is performed on significantly higher level in comparison to
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MAID
 2007

11S  (1535)

T
11S  

11S  (1535)

11S  (1535)

11
S  (1535)

11
S  (1535)11S  (1535)

π0

dψ ψd

γ

(a)

π0

ψddψ

(c)

γ

dψ
π0

ψd

(b)

  π,η

γ

π0
dψ

ψd  π,η

γ

(e)

π0

dψ ψd

γ

(d)

++

− −

FIG. 2: The considered diagrams in coherent π0-photoproduction from the deuteron in the near η-threshold region, (a) impulse
approximation (IA), (b) contribution from two-step process with intermediate production of both π- and η-mesons [called
also first-order rescattering] (FOR), and (c) additional contribution from intermediate ηNN three-body dynamics (TBM). In
order to avoid double counting, diagrams (d) and (e) are removed from the three-body amplitude since they possess the same
topology as the ones already included in diagrams (a) and (b). For the calculation of diagrams (c), (d), and (e) only the s-wave
state 1S0 (Jπ = 0−, T = 1) is considered. The diagrammatic representation of the TS11 amplitude of photoproduction of the
S11(1535)-resonance from the deuteron is shown in Fig. 3. Diagrams when the elementary operators act on nucleon ’2’ are not
shown in the figure but are included in the calculations. In the calculations, each diagram shown in the figure goes accompanied
by the diagram obtained by the exchange N1 ↔ N2.

11S  (1535) 11S  (1535)

T
11S  

11S  (1535)

T
11S  

11
S  (1535)

11
S  (1535)

Ψd
Ψd Ψd+

γ γ

1S 0

η

  π,η

γ

+ 2

FIG. 3: Diagrammatic representation for the TS11 amplitude of photoproduction of the S11(1535)-resonance on the deuteron
(as shown in diagram (c) of Fig. 2) calculated only in the s-wave state 1S0 (Jπ = 0−, T = 1).

what was done in Refs. [16, 19, 20] since the full dynam-
ics in the intermediate ηNN system was not considered
in the latter works. The three contributions in diagram
(a), diagrams (a)+(b), and diagrams (a)+(b)+(c) of Fig.
2 present three different successively improved levels of
approximation to the reaction amplitude. In this approx-
imation, the total transitionMfi-matrix element is given
by the sum

Mmdλm
′

d
(~q,~k) = MIA

mdλm
′

d

(~q,~k) +MFOR
mdλm

′

d

(~q,~k)

+MTBM
mdλm

′

d

(~q,~k) . (39)

Choosing the z-axis in the direction of the incoming
photon one can expand the M-matrix in spherical har-
monics depending only on the pion momentum and its
direction. Introducing a partial wave decomposition and
isolating the azimuthal dependence, one finds for the
scattering matrix the relation

Mfi

m′

d
λmd

(~q,~k) = ei(λ+md)φ tfi
m′

d
λmd

(Wγd, θ) , (40)

where the reduced t-matrix elements are defined by sep-
arating the φ-dependence from the M-matrix elements.
These matrix elements are the basic quantities that de-
termine cross sections and polarization observables. If
parity is conserved, the reduced t-matrix elements obey

the following symmetry property

tfi−m′

d
−λ−md

(Wγd, θ) = (−)1+m′

d
+λ+md tfi

m′

d
λmd

(Wγd, θ).

(41)

1. The Impulse Approximation

For the IA contribution of coherent photoproduction of
π0-meson from the deuteron (diagram (a) in Fig. 2), one
has the scattering amplitude MIA

mdλm
′

d

for the transition

between the deuteron target states with spin projections
md and m′

d on the z-axis, chosen along the photon mo-
mentum ~q,

MIA
mdλm

′

d

(~q,~k) = 2

∫
d3p

(2π)3
φ†
m′

d

(~p ′)

× tλπγ(~q, ~pi,
~k, ~pf )φmd

(~p) (42)

with tλπγ denotes the corresponding elementary pion pho-
toproduction operator on the nucleon. Furthermore, the
vectors ~pi and ~pf denote the initial and final momenta
of the active nucleon in the deuteron, for which we have

~pi = ~p−~q/2 and ~pf = ~p−~k+~q/2, and ~p ′ = ~p+(~q−~k )/2
denotes the relative momentum in the final deuteron
state.
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For the deuteron wave function we use the familiar
ansatz

φmd
(~p ) =

∑

L=0,2

∑

mLmS

(LmL1mS |1md)uL(p)

× YLmL
(p̂)χmS

ζ0 , (43)

where χmS
and ζ0 denote spin and isospin wave functions,

respectively. The S and D components of the deuteron
wave function are given by u0(p) and u2(p), respectively.
In the present work, we compute the radial deuteron wave
function in the initial and final states using the realistic
high-precision CD-Bonn potential form [38].
For nuclear application it is convenient to split the el-

ementary pion photoproduction amplitude tλπγ , involving
an invariant product between the photon polarization ǫµ
and the electromagnetic current Jµ, into spin indepen-
dent and spin-flip amplitudes as follows (the index λ is
omitted for convenience in the following expressions) [22]

tπγ = ǫµ J
µ

= L+ i~σ · ~K

=
∑

n=0,1

(−i)n
√
2n+ 1

[
σ

(n) ⊗K(n)
](0)

, (44)

where ~σ denote the Pauli spin matrices with σ
(0) = 1, L

and ~K are functions of the invariant pion photoproduc-
tion amplitudes Ai (i=1, 2, 3, 4) with K(0) = L. The el-

ementary production amplitudes L and ~K are calculated
from the non-relativistic reduction of the elementary op-
erator [15, 39] and are given in Appendix B.
Since both initial and final states of the deuteron are

unpolarized, the sums over the spin projections can be
performed by means of

∑

mdm
′

d

∣∣∣Mmdm
′

d

∣∣∣
2

=
∑

Λ,mΛ

∣∣∣M(Λ)
mΛ

∣∣∣
2

. (45)

Then, using standard angular momentum algebra, the
reaction amplitude (42) can be put into the following
form

MIA
mdm

′

d

(~q,~k) = 2
√
3

2∑

Λ=0

∑

MΛ

(−1)MΛ
√
2Λ + 1

×(1mdΛ−MΛ|1m′
d)

×
∑

LL′=0,2

∫
d3p

(2π)3

[{
L 1 1
1 L′ Λ

}

× {Y [L′](p̂′)⊗ Y [L](p̂)}[Λ]
MΛ

L

−(−1)Λ
√
6

3∑

ℓ=0

√
2ℓ+ 1






Λ 1 1
1 1 1
ℓ L L′






× {{Y [L′](p̂′)⊗ Y [L](p̂)}[ℓ] ⊗K [1]}[Λ]
MΛ

]

× uL′(~p ′)uL(~p ) . (46)

As for the isospin structure, it is easy to understand
that from all three amplitudes in the isospin decomposi-
tion of the elementary operator for pion photoproduction
with Cartesian index α=1, 2, 3 [40]

tπγ =M (0)τα +M (−) 1

2
[τα, τ3] +M (+)δα3 , (47)

only M (+) can contribute to the coherent process from
the deuteron.
In the present work, we use as realistic elementary pion

production operator the MAID2007 model [30] which has
been developed to analyze the world data for pion pro-
duction off protons and neutrons. The MAID model
is a unitary isobar model for a partial wave analy-
sis, where all parameters are fitted to experimental ob-
servables as cross sections and polarization asymmetries
from pion photo- and electroproduction in the energy
range from pion threshold up to Wγ⋆N = 2 GeV and
photon virtualities Q2 < 5 GeV2. It is based on a
non-resonant background described by Born terms and
vector-meson exchange contributions in the t-channel
and 13 four star nucleon resonance excitations in the
s-channel below 2 GeV. This model uses effective La-
grangian methods to calculate the Born background, in-
cluding ρ- and Eγ-meson exchange processes. The back-
ground amplitudes are unitarized with a (1 + ifπN

ℓ± ) fac-

tor, where fπN
ℓ± are the πN -scattering amplitudes. More-

over, the following four star nucleon resonances were in-
cluded in the MAID2007 model: P33(1232), P11(1440),
D13(1520), S11(1535), S31(1620), S11(1650), D15(1675),
F15(1680), D33(1700), P13(1720), F35(1905), P31(1910),
and F37(1950). These resonances are described by Breit-
Wigner forms. The MAID2007 model is parameterized
in terms of invariant amplitudes and allows for the evalu-
ation in any frame of reference. Feynman diagrams of the
MAID elementary amplitude of pion photoproduction on
the nucleon are shown in Fig. 4.

2. The Rescattering Effects

In what follows, we describe the matrix elements for
the calculation of the additional contributions of two-
body process MFOR

mdλm
′

d

(diagram (b) in Fig. 2) and

the full ηNN three-body dynamics MTBM
mdλm

′

d

(diagram

(c) in Fig. 2). These two contributions are governed
by various hadronic and electromagnetic two-body re-
actions included in our treatment of diagrams (b) and
(c) in Fig. 2. Due to the strong coupling between the
ηN and πN channels in the S11(1535)-resonance region,
the transitions ηN ↔ πN must, in general, be taken
into account. Therefore, in the present work, only the
S11(1535)-resonance is taken into account in the calcula-
tion of the π- and η-exchange contributions and all con-
tributions from other resonances are neglected. This ne-
glect leads to an underestimation of the π-rescattering
effect, but it should not strongly affect the quality of the
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FIG. 4: Feynman diagrams for pion photoproduction from free nucleons. Born terms: (A) direct nucleon pole or s-channel, (B)
crossed nucleon pole or u-channel, (C) pion in flight or t-channel, and (D) Kroll-Rudermann contact term; (E) vector-meson
exchange; resonance excitations: (F) direct or s-channel and (G) crossed or u-channel.

results (see also Refs. [17, 22, 24, 25]). The reason for this
stems from the fact that this effect does not contribute
into the formation of the peak structure observed in the
differential cross section at extremely backward pion an-
gles around the production of η-threshold [3, 4]. In Ref.
[12] where the pion-exchange mechanism was calculated
more precisely the corresponding effect in the second res-
onance region is less than 20%. This means that the role
of pion-exchange seems to be not very essential.
As already indicated in the caption of Fig. 2, the three-

body problem for the intermediate ηNN system is solved
only for the lowest s-wave three-body configuration 1S0

(Jπ = 0−, T = 1). It is the state of lowest orbital angu-
lar momentum (ℓ = 0) which is mostly distorted by the
multiple scatterings between particles in the intermediate
two-body systems and coupled with angular momentum
ℓ = 0 of the third particle with respect to the pair [41].
The remaining partial waves with higher orbital angu-
lar momentum can be included perturbatively up to the
first order within the rescattering approximation (dia-
grams (a)+(b)). This approximation is well justified by
the strong s-wave dominance in the intermediate two-
body interactions. As was shown in Refs. [41, 42], it is
the lowest s-wave three-body state, that is very sensitive
to the higher-order scattering contributions. The higher
partial waves are well approximated by the first-order
rescattering terms.
For the elementary amplitudes appearing in diagrams

(b) and (c) of Fig. 2, we assume that the π- and η-
photoproduction reactions on the nucleons as well as
their interactions with nucleons were assumed to proceed
exclusively via the excitation of the S11(1535)-resonance.
According to this assumption, the separable transition
matrix TαN→βN (α , β ∈ {π, η}) of meson-nucleon scat-
tering is given by the conventional isobar model [43]

TαN→βN(~p, ~p ′;W ) =

gα(~p ) gβ(~p
′)

W −M0 − Ση(W )− Σπ(W )− Σππ(W )
, (48)

as a function of the invariant energy of the on-shell
meson-nucleon scattering W , where α, β ∈ {π, η} and
Σπ(W ), Ση(W ), and Σππ(W ) denote the S11(1535) self

energy contributions from the πN , ηN , and ππN chan-
nels, respectively. ~p and ~p ′ denote the relative on-shell
momenta in the initial and final states of meson-nucleon
scattering, respectively. The TαN→βN matrix is deter-
mined by the bare resonance mass M0 = 1598 MeV and
the parameters of the vertex functions gα(~p ). For the
latter, we take a simple Hulthén form

gα(~p ) = gα

(
1 +

p2

Λ2
α

)−1

, (49)

containing the strength of the coupling gα and the range
of the Hulthén form factor Λα. As in Ref. [17], the scat-
tering parameters gπ = 2.51, gη = 2.0, Λπ = 404.5 MeV,
and Λη = 694.6 MeV are used. These parameters are ad-
justed to fit the ηN scattering length aηN = (0.5 + i0.3)
fm and at the same time to provide a reasonably good
description of the reactions γN → αN and π−p→ ηn in
the S11(1535) channel (see also Refs. [17, 44, 45]). This
value of aηN is considered as an approximate average of
the scattering lengths provided by modern ηN scattering
analyses.
The contributions to the self energy from the various

channels are expressed in terms of gα(~p ) (α, β ∈ {π, η})
as follows

Σα(W ) =
1

2π2

∞∫

0

q2dq

2ωα(q)

g2α(q)

W − EN (q)− ωα(q) + iε
,

(50)
with EN and ωα denoting the on-shell energies of nucleon
and meson, respectively. Since the double pion channel
ππN is not explicitly included in the present calcula-
tions, primarily because of its rather weak coupling to
the S11(1535)-resonance, we parameterize, following [43],
the corresponding self energy in a simplified manner as
a pure imaginary contribution proportional to the three-
particle phase space

Σππ(W ) = − i

2
γππ

W −MN − 2mπ

mπ

, (51)

with γππ = 4.3 MeV.
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For the π- and η-photoproduction amplitudes on the
nucleon, we take the same ansatz as in (48) where one
hadronic vertex function is replaced by the electromag-
netic vertex gγN for γN → S11(1535) which depends only
on the invariant energy of the on-shell γN → αN inter-
action WγN and is parameterized in the form

gγp(WγN )

=






e√
4π

4∑

n=0

an

(
k

mπ

)n

, for WγN ≥MN +mπ ,

gγp(MN +mπ) , else ,

(52)

gγn(WγN ) = −0.82 gγp(WγN ) ,

where a0 = 0.5502, a1 = −0.01923, a2 = 0.1018,
a3 = 0.002255, and a4 = −0.007042 [17]. The pion c.m.
momentum corresponding to the total invariant energy
WγN is given by

k =

√
[W 2

γN − (MN +mπ)2][W 2
γN − (MN −mπ)2]

2WγN

.

(53)

The isospin dependence of the S11(1535) photo-
excitation amplitude is taken in this work according to
the approximate quantity [46]

σ(γp→ ηp)

σ(γn→ ηn)
≈ 0.67 . (54)

As mentioned above, the parameters, appear in the
expressions (48) through (52), are chosen in such a
way that, the reactions γN → αN (α ∈ {π, η}) and
π−p → ηn are well reproduced in the S11(1535) chan-
nel (see also Refs. [44, 45]). Also, the chosen parameter
set predicts the value aηN = (0.5 + i0.3) fm for the ηN
scattering length which has been considered in Ref. [17]
as an approximate average of the various values provided
by the ηN analyses.
For the numerical solution of the three-body problem

for the intermediate ηNN interaction we use the method
described in Ref. [41]. For completeness, details of the
essential ingredients of the formalism for this method are
given in Appendix C. Here, we only would like to mention
that the key point of the method is the separable repre-
sentation of the driving two-body interaction in the πN ,
ηN , and NN subsystems. The corresponding TαN→βN

(α , β ∈ {π, η}) matrix for meson-nucleon multiple chan-
nel scattering is given by the isobar formula (48), which is
driven exclusively by the dominant S11(1535) resonance.
For the NN interaction, we use the separable represen-
tation of the Bonn potential as given in Ref. [47] for the
1S0 and 3S1 configurations.
As is well known, the separable ansatz makes it pos-

sible to reformulate the three-body problem in terms of
two-body scattering between quasiparticles without loss

of essential physics. As a consequence, the solution of
the problem is given by an amplitude TS11

of the effec-
tive transition γd → NS11 as presented in Fig. 3. The
needed physical amplitude γd → π0d is then obtained
through an additional loop integration (diagram (c) in
Fig. 2).

III. RESULTS AND DISCUSSION

Now, we will discuss our results for coherent photo-
production of π0-meson from the deuteron near the η-
production threshold. In particular, we concentrate our
discussion on results at backward pion angles, where a
cusp-like structure in the energy dependence of the differ-
ential cross section has been observed at extreme back-
ward direction [3, 4]. Our calculations are based on a
theoretical approach which includes the amplitudes of the
pure IA, two-step process with intermediate πN - and ηN -
rescatterings, and the higher order terms in the multiple
scattering series for the intermediate ηNN three-body in-
teraction. We would like to mention that possible recoil
polarization of the final deuteron is neglected.
The pion photoproduction amplitude is evaluated by

taking a realistic NN potential model for the deuteron
wave functions. In our calculation, the wave function of
the CD-Bonn potential model [38] has been used. For
the elementary pion photoproduction operator, the ex-
tended version of the unitary isobar MAID2007 model
[30] has been considered. For the various hadronic and
electromagnetic two-body reactions included in our treat-
ment of the rescattering diagrams, only the S11(1535)
resonance was taken into account. In addition, the pho-
toproduction of π- and η-mesons on the nucleon as well
as their interactions with nucleons were assumed to be
proceed exclusively via the extraction of the S11(1535)
resonance. The intermediate ηNN three-body problem
has been solved by using separable representation of the
driving two-body interaction in the πN , ηN , and NN
subsystems. The corresponding amplitudes for πN and
ηN scattering are given by the isobar formula (48). For
the NN subsystem, the separable representation of the
Bonn potential [47] for the 1S0 and

3S1 channels has been
used.

A. Differential and Total Cross Sections

We start the discussion with the results for differential
and total cross sections for coherent π0-photoproduction
from the deuteron near η-threshold as plotted in Figs. 5
and 6 in the pure IA and with rescattering effects [24].
The calculated differential cross section at several fixed

values of cos θ in the γd c.m. frame is plotted in Fig. 5 as
a function of photon lab-energy (the experimental CLAS
data [3, 4] are at the same values of cos θ). It is clear that
the contribution from IA amplitude (dotted curve) domi-
nates the differential cross section for cos θ = 0. The rela-
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FIG. 5: (Color online) The differential cross section of γd → π0d versus photon lab-energy at various values of cos θ in the γd
c.m. frame using MAID2007 [30] for the elementary amplitude and CD-Bonn potential [38] for the deuteron wave function.
Curve conventions: dotted, IA; dashed, IA+FOR; solid, IA+FOR+TBM.

tive contribution from other amplitudes increases as cos θ
approaches −0.85. This means that the differential cross
section shows at forward direction very little influence of
the two-step processes and all terms in the multiple scat-
tering series within a three-body model. With increasing
pion angles, a noticeable contribution from the two-step
processes and intermediate ηNN three-body interaction
is obtained in the photon lab-energy range from Eγ ≃ 600
to 800MeV. It becomes maximum at extremely backward
pion angles. This maximum is getting more pronounced
at cos θ → −0.85.

Figure 5 demonstrates the peak observed in the energy
dependence of the differential cross section at extremely
backward pion angles and photon lab-energy slightly
above 700 MeV [3, 4]. As was mentioned in Ref. [16], the
main origin of this effect is the presence of the S11(1535)-
resonance in the diagram with ηN -rescattering. In ad-
dition, the contribution from intermediate ηNN three-
body interaction make also a slight contribution to the
formation of the bump structure. Our present results
confirm these statements. When the full dynamics in
the intermediate ηNN system is included (solid curve
in Fig. 5), a much more prominent peak structure is ob-
served at photon lab-energy slightly above 700 MeV. This
structure accompanied by a slight shift towards lower en-
ergies. Therefore, the difference between the solid and
dashed curves in Fig. 5 demonstrates the importance
of the higher order contributions in the multiple scatter-
ing series for the intermediate ηNN interaction. This
means, in particular, that the physics behind the cusp
structure observed in the differential cross section for co-
herent π0-photoproduction from the deuteron [3, 4] near
η-threshold at backward direction may be complicated
than was discussed in Ref. [16]. We would like to point
out that the cusp structure caused by the opening of
the ηN channel is strongly smeared by the Fermi mo-
tion effect and can hardly be visible in the reaction on a

deuteron. The structure which we see at backward an-
gles in Fig. 5 is nothing but a consequence of interference
between IA and rescattering contributions in Eq. (39).

In comparison with the calculation of Ref. [17], we can
only compare with results at cos θ=0 and -0.85, where
differences are found. These differences seem likely to
be due to the fact that the author of Ref. [17] used the
MAID2003 model [29] for the elementary γN → π0N
amplitude and the Bonn potential (OBEPQ version) [48]
for the deuteron wave function, while in the present work
we used the extended version MAID2007 model [30] for
the former and the CD-Bonn potential [38] for the latter.
We will return to this point in subsection III L, where we
found that the computations with different elementary
amplitudes are quite different.

We show in the left panel of Fig. 6 the results for to-
tal cross section as a function of photon lab-energy near
η-threshold using the MAID2007 model [30] for the ele-
mentary amplitude and the CD-Bonn potential [38] for
the deuteron wave function. A comparison of the dotted
to the solid curves demonstrates the effect of the mod-
ified three-body calculation. It is clear that the curves
are almost coincide. One notes in general a weak influ-
ence from the rescattering effects which is not the case for
differential cross section. These effects become a few per-
cent in the minimum and in the peak position, where a
slight enhancement in the maximum is found. It reduces
the total cross section by a few percent at Eγ ≃ 630
MeV and shifts its maximum towards a slightly higher
position at Eγ ≃ 750 MeV. In order to give a more de-
tailed and the relative size of rescattering effects, we have
plotted in the right panel of Fig. 6 the relative deviations
σtot
IA+FOR/σ

tot
IA (dashed curve) and σtot

IA+FOR+TBM/σtot
IA

(solid curve) as functions of photon lab-energy. One
notes in general a weak influence from the rescattering
effects.
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FIG. 6: (Color online) Left panel: Total γd → π0d cross
section as a function of photon lab-energy using MAID2007
[30] for the elementary amplitude and CD-Bonn potential [38]
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IA (red solid) as functions of
Eγ .

B. Beam Asymmetry for Linearly Polarized

Photons

As next, we discuss the results for the photon asym-
metry Σ for linearly polarized photons and unpolarized
deuterons of the ~γd → π0d reaction [22]. For an unpo-
larized deuteron, i.e. P d

1 = P d
2 = 0, and photons linearly

perpendicular and parallel to the reaction plane, the cor-
responding cross sections are

dσ⊥
dΩ

=
dσ0
dΩ

[1− P γ
l Σ(θ)] for φ =

π

2
, (55)

dσ‖

dΩ
=

dσ0
dΩ

[1 + P γ
l Σ(θ)] for φ = 0 . (56)

Thus measuring the cross sections for parallel and per-
pendicular linear polarization allows one to determine the
photon asymmetry

Σ(θ) =
1

P γ
l

dσ‖ − dσ⊥

dσ‖ + dσ⊥
. (57)

Figure 7 illustrates the energy dependence for the lin-
ear photon asymmetry calculated at fixed values of cos θ
in the γd c.m. frame in IA (dotted curves), IA+FOR
(dashed curves), and IA+FOR+TBM (solid curves). In
general, we see that the photon asymmetry has positive
values. It is quite large at cos θ=0 and decreases with
increasing pion angle. At backward direction, one notes
a different behavior of the photon asymmetry. The deep
minimum at Eγ ≃ 630 MeV is not obvious at cos θ=0.
The beam asymmetry Σ exhibits quite a broad structure
at Eγ ≃ 700 MeV for extreme backward direction which
is not the case at cos θ=0.
The inclusion of FOR decreases the photon asymmetry

Σ when the photon lab-energy changes from Eγ ≃ 580 to
730 MeV. At higher energies, one notes that the inclusion
of FOR increases the photon asymmetry in comparison
to the IA values. At backward direction, it is obvious
that Σ exhibits a maximum at Eγ ≃ 650 MeV when
only the IA prediction is considered. When the FOR

contribution is switched on, this maximum is shifted to-
wards higher energies. When the full rescattering terms
are taken into account, this maximum is shifted towards
lower energies with larger values of photon asymmetry.
One notes also that the Σ-asymmetry decreases with in-
creasing pion angle until it reaches zero at θ = π. Clearly,
the influence of FOR and TBM contributions is notice-
able even at cos θ=0. This means that the Σ-asymmetry
is quite sensitive to the interference of rescattering effects.

C. Target Asymmetries for Polarized Deuterons

By proper choices of the deuteron orientation axis one
can extract the target asymmetries TIM for unpolarized
photons. Figure 8 provides an overview over the vector
(T11) and the tensor (T20, T21, T22) target asymmetries

for γ ~d→ π0d as functions of photon lab-energy at various
values of cos θ [22]. In general, one notes strong sensitiv-
ity to the rescattering effects at backward direction and
also at cos θ=0. The vector target asymmetry T11 is pos-
itive at cos θ=0, but it has negative values at extreme
backward direction. It is sensitive to the imaginary parts
of the scattering amplitudes and shows a broad energy
dependence over the whole angular range. The struc-
ture of T11 changes significantly with pion angle. While
at cos θ=0 one finds a maximum around 620 MeV, one
notes a backward negative minimum around 650 MeV.
The results of T11 indicate that the influence of interme-
diate ηNN three-body calculation is important at back-
ward direction, specially for photon energies close to the
η-threshold. One notices also that the T11-asymmetry
decreases with increasing pion angle. It becomes zero at
θ = π.
The tensor target asymmetries of the reaction γ ~d →

π0d are much more sensitive to the rescattering effects
(see also Ref. [20] where only the first-order rescattering
was considered). This is apparent in the T20, T21, and T22
asymmetries for tensor polarized deuterons and unpolar-
ized photons as shown in Fig. 8. The T20-asymmetry has
negative values. It exhibits at backward direction a rapid
increase with increasing photon energy. We found that
T20 is very sensitive to the rescattering contributions. In
the region of 620 MeV < Eγ < 800 MeV, the contribution
of TBM is more important even at cos θ=0. The con-
tribution of FOR dominates at photon energies greater
than 800 MeV at extreme backward direction. The re-
sults of T21 and T22 asymmetries are also sensitive to the
rescattering effects at backward direction. The difference
between the dotted (IA) and the solid (IA+FOR+TBM)
curves in Fig. 8 is noticeable at Eγ > 600 MeV and back-
ward direction. This difference is small at cos θ=0 in the
case of T21-asymmetry. At backward direction, the T21-
asymmetry shows an oscillatory behavior and a drastic
influence of rescattering effects when the full rescatter-
ing terms are switched on. T21 exhibits a sharp peak
at Eγ ≃ 650 MeV and clearly differs in size between
IA and IA+FOR+TBM, being even opposite in phase
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FIG. 7: (Color online) Same as in Fig. 5 but for the beam asymmetry Σ for linearly polarized photons of ~γd → π0d.
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FIG. 8: (Color online) Same as in Fig. 5 but for the target asymmetries T11, T20, T21, and T22 of γ ~d → π0d.

around photon energies of 650 MeV. The T22-asymmetry
has negative values at cos θ=0 and a noticeable contribu-
tion from the rescattering effects is noted. At backward
direction, the T22-asymmetry exhibits a peak near Eγ=
650 MeV that becomes broader with increasing pion an-
gle. The top of this peak decreases with increasing pion
angle. We want to remind that the T21 and T22 asymme-
tries are equal zero at θ = π.

We find that the single-spin asymmetries for the γ ~d→
π0d reaction are sensitive to the contribution of interme-
diate ηNN three-body interaction.

D. Beam-Target Asymmetries for Circularly

Polarized Photons and Polarized Deuterons

Next we discuss the beam-target double spin asym-
metries for circularly polarized photons and polarized
deuterons [22]. We display in Fig. 9 the asymmetries
T c
10 and T c

11 for circularly polarized photons and vector
polarized deuterons and in Fig. 10 the asymmetries T c

21

and T c
22 for circularly polarized photons and tensor polar-

ized deuterons. We note that all of theses asymmetries
are non-vanishing. An exception are the asymmetries
T c
11, T

c
21, and T c

22 which equal zero at θ = π. As al-
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ready mentioned in section II, the T c
20-asymmetry vanish

identically.

The vector asymmetry T c
10 is quite sizeable in the back-

ward direction and also at cos θ=0. We want to remind
that this beam-target double spin asymmetry determines
the GDH sum rule [37]. We found that the influence of
rescattering effects is important, in particular at back-
ward direction. One can also see that the energy de-
pendence is strong. When the rescattering effects are
switched on, one sees for θ=90◦ that the T c

10-asymmetry
has a peak at Eγ ≃ 650 MeV. The results of T c

10 is then
rapidly falloff to negative values. At backward direction,
we note that T c

10 has a negative minimum around Eγ=
650 MeV. It is also clear that T c

10 is quite sensitive to
the interference of rescattering contributions. The other
vector asymmetry, T c

11, shows a rather different behavior.
The influence of rescattering effects is sizeable at photon
energies greater than 650 MeV. T c

11 decreases with in-
creasing photon energy until it reaches a minimum value
and then increases again. This minimum value shifts to-
ward lower energies with increasing pion angle. The T c

11-
asymmetry is considerably larger at backward direction,
but it is a little less sensitive to the rescattering effects
in comparison to the T c

10 asymmetry, specially at back-
ward direction. The role of rescattering effects becomes
important in the energy range of Eγ= 650–800 MeV.

The tensor asymmetries T c
21 and T

c
22 (Fig. 10) are more

sensitive to the rescattering effects. This is particularly
apparent at backward direction. The T c

21-asymmetry
shows that the pure IA is dominant at photon energies
less than 630 MeV. When cos θ=0, we see that T c

21 in-
creases with increasing photon energy until Eγ ≃ 600
MeV and then rapidly decreases to negative values. On
the contrary, it decreases at backward direction until it
reaches a minimum value at about 630 MeV and then
rapidly increases with increasing photon energy until a
broad maximum is reached and then slowly decreases.
The T c

22-asymmetry has a similar behavior. However,
rescattering effects are much larger in this case at back-
ward direction. When θ=90◦, the inclusion of rescat-
tering effects decreases the T c

22-asymmetry for Eγ >
650 MeV. At backward direction, one sees that the in-
clusion of rescattering contributions increases the T c

22-
asymmetry. We observe also that the inclusion of FOR
alone would lead to quite different results for T c

21 and
T c
22-asymmetries as can be seen from Fig. 10. When

the full rescattering terms are considered, one notes that
T c
22 decreases with increasing photon energy until a mini-

mum value at about 600 MeV is reached. With increasing
photon energy, T c

22 increases until a maximum value at
about 650 MeV is obtained and then decreases again. A
peak at extreme backward direction is obvious for Eγ ≃
650 MeV. When only the FOR effect is considered, one
sees a second peak at about 800 MeV. This peak is not
clearly obvious when in addition the TBM contribution
is taken into account, because the T c

22 asymmetry has
large negative value of IA at this value of energy.

E. Beam-Target Asymmetries for Linearly

Polarized Photons and Polarized Deuterons

We now turn to the beam-target double spin asym-
metries for linearly polarized photons and polarized
deuterons [22]. The vector asymmetries T l

10 and T l
1±1

are shown in Fig. 11, while the tensor asymmetries T l
20,

T l
2±1, and T

l
2±2 are displayed in Fig. 12. A quick glance

reveals that the different contributions from rescattering
terms manifest themselves in quite different ways in the
various asymmetries. We note that all of these asym-
metries are quite sizable in the backward direction and
at cos θ=0. They are also sensitive to the rescattering ef-
fects. The influence of the rescattering mechanism can be
seen by comparing the pure IA (dotted curves) with the
full calculations (solid curves). Its contribution is biggest
in the Eγ=600–800 MeV region. Here, we want also to
remind that the T l

10, T
l
1±1, T

l
20, and T l

2±1 asymmetries
vanish identically at θ = π.

At cos θ=0, one notes for the T l
10 and T l

1±1 asymme-
tries that the IA contribution is dominant in the energy
region until 620 MeV. At higher energies, the rescatter-
ing effects contribute and a small cancellation between
FOR and TBM is seen. Indeed, the rescattering effects
are important in T l

11, but much less important in T l
10

and T l
1−1 asymmetries. At backward direction, one notes

also a small cancellation between FOR and TBM in T l
1±1

asymmetries, which is not the case for T l
10. In addition,

one sees that the asymmetry T l
10 differs in size between

IA and IA+rescattering, being opposite in phase around
650 MeV. It shows enhanced sensitivity to TBM. The in-
fluence of rescattering effects increases significantly when
going from T l

1±1 to T l
10. We found that the interference

between IA and rescattering terms in T l
11 is strongly angle

dependent. It is also obvious that the T l
2−2 asymmetry

becomes quite smaller at photon energies greater than
600 MeV if the TBM is included. At smaller energies,
the TBM contribution is negligible.

Of the corresponding tensor asymmetries in Fig. 12,
T l
20 is the largest. At cos θ=0, the effect of FOR and

TBM is small. An exception is the T l
20 asymmetry where

a notable effect is seen at photon energies greater than
600 MeV. At backward direction, one observes some of
the rescattering effects in T l

2±1, whereas quite drastic in-

fluences of the rescattering effects can be seen in T l
20 and

T l
2±2 asymmetries. It is obvious that T l

2±2 asymmetries
show enhanced sensitivity to the contribution of TBM at
energies greater than 650 MeV. As one notices, the in-
terference between IA and IA+FOR+TBM in T l

2−2 is
strongly dependent on photon energy and pion angle.
This asymmetry has small positive values at extreme
backward direction, but not vanish identically at θ = π.
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FIG. 9: (Color online) Same as in Fig. 5 but for the beam-target spin asymmetries T c
10 and T c

11 for circularly polarized photons

and vector polarized deuterons of ~γ~d → π0d.
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FIG. 10: (Color online) Same as in Fig. 5 but for the beam-target spin asymmetries T c
21 and T c

22 for circularly polarized photons

and tensor polarized deuterons of ~γ ~d → π0d.

F. Spin Asymmetries of the Total Cross Section

The spin asymmetries of the total cross section σ0T̃20,

σ0T̃
c
10, and σ0T̃

l
22 are shown in Fig. 13 as functions

of photon lab-energy [22]. The left panel displays the

asymmetry σ0T̃20 for tensor polarized deuterons and

unpolarized photons, the middle panel presents σ0T̃
c
10

for circularly polarized photons and vector polarized

deuterons, and the right panel illustrates the σ0T̃
l
22 asym-

metry for linearly polarized photons and tensor polarized

deuterons. We found that the asymmetries σ0T̃20 and

σ0T̃
c
10 have negative values, whereas the σ0T̃

l
22 asymme-

try has positive ones. A comparison of the dotted (IA)
to the solid (IA+FOR+TBM) curves demonstrates the
effect of the complete three-body calculation. It is clear
that the three curves are almost coincide. As in the case
of unpolarized total cross section (Fig. 6), one notes that

the influence of rescattering effects is quite marginal al-
though not negligible. These effects become a few percent
in the minimum and in the peak position.

G. Helicity-Dependent Cross Sections

Now, we start the discussion of the results for the dou-
bly polarized differential and total cross sections for par-
allel and antiparallel spins of photon and deuteron as
shown in Figs. 14 through 17 [25]. Special emphasize is
given to their dependence on the complete intermediate
ηNN three-body calculation.

Fig. 14 shows the helicity dependent differential cross
section dσP /dΩ for parallel spins of photon and deuteron
as a function of photon lab-energy at different values
of cos θ in the γd c.m. frame. The dotted, dashed,
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FIG. 11: (Color online) Same as in Fig. 5 but for the beam-target spin asymmetries T l
10 and T l

1±1 for linearly polarized photons

and vector polarized deuterons of ~γ~d → π0d.

and solid curves show the results of IA, IA+FOR, and
IA+FOR+TBM, respectively. In general, it is obvious
that dσP /dΩ rapidly decreases with increasing pion an-
gle. Also, increasing pion angle from cos θ = −0.65
to −0.85 at Eγ = 500 MeV leads to a decrease in
dσP /dΩ from 4.5 nb/sr to 0.5 nb/sr. At cos θ = 0,
one sees that the results exponentially decrease with in-
creasing photon energy. The effect of FOR and TBM
is rather small in this case and the main contribution
comes from the IA term. Rescattering effects appear
mainly at extreme backward direction, where one ob-
serves a large cancellation between FOR and TBM con-
tributions which becomes strong with increasing photon
energy. The inclusion of these effects reduces the val-
ues of dσP /dΩ. An exception of this reduction occurs at
cos θ = −0.85, where the IA value is found to be smaller
than the IA+FOR+TBM one in the photon energy range
Eγ ≃ 670−750MeV. It is also clear from Fig. 14 that the
inclusion of FOR alone leads to quite different results.

Apparently, our calculation with complete rescattering
effects exhibits a broad maximum at extreme backward
direction when the photon energy changes from Eγ =
700 to 800 MeV. This phenomena takes place because η-
production in hadron-hadron collision near the threshold
is enhanced, because the cross section for excitation of
the nearby baryonic resonance S11(1535) is large and this
resonance is strongly coupled to the ηN channel.

In Fig. 15 we present our results for the differential
polarized cross section dσA/dΩ for antiparallel spins of
photon and deuteron as a function of photon energy at
different values of cos θ. As in the case of dσP /dΩ, we see

here that dσA/dΩ rapidly decreases with increasing pion
angle. It begins with 200 nb/sr at Eγ = 500 MeV and
cos θ = 0, while it decreases to 4 nb/sr at cos θ = −0.85
and the same energy. At cos θ = 0, one sees that the
three curves of different contributions to the scattering
amplitude almost coincide. This would imply that the
rescattering effects be very small. But, if one goes to ex-
treme backward pion angles, the rescattering effects seem
to be substantially large. These effects are biggest in the
Eγ = 600−800 MeV region and extreme backward direc-
tion. The FOR contribution leads to a strong reduction
of dσA/dΩ in this energy region and a broad minimum
is seen at about Eγ = 670 MeV, The inclusion of TBM
shifts this minimum towards lower energies with larger
values of dσA/dΩ.

Fig. 16 displays the helicity dependent differential
cross section difference d(σP − σA)/dΩ for parallel and
antiparallel spins of photon and deuteron. Here, we see
that the interference between IA and rescattering con-
tributions is strongly angle dependent, leading to an ob-
vious decrease in d(σP − σA)/dΩ at extreme backward
angles. It is seen in Fig. 16 that the dependence of
d(σP − σA)/dΩ on rescattering effects is small at ener-
gies less than Eγ = 600 MeV, but it becomes visible at
higher energies and extreme backward angles. An excep-
tion is the result at cos θ = 0 where one finds a very small
contribution from rescattering effects. At extreme back-
ward direction, one observes a very strong cancellation
between FOR and TBM contributions which becomes
stronger in the photon energy range Eγ = 650 − 800
MeV. Thus, the inclusion of both FOR and TBM is seen
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FIG. 12: (Color online) Same as in Fig. 5 but for the beam-target spin asymmetries T l
20, T

l
2±1, and T l

2±2 for linearly polarized

photons and tensor polarized deuterons of ~γ~d → π0d.
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FIG. 13: (Color online) Same as in Fig. 5 but for the spin asymmetries σ0T̃20, σ0T̃
c
10, and σ0T̃

l
22 of the total cross section.

very important in this energy range. The negative values
in d(σP −σA)/dΩ at backward direction are due to large
positive values in dσA/dΩ.

An integration of dσP /dΩ, dσA/dΩ, and d(σP −

σA)/dΩ over the solid angle dΩ gives σP , σA and their
difference σP − σA of the doubly polarized total cross
sections which are presented in Fig. 17. The upper part
shows the total photo-absorption cross sections σP for
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FIG. 14: (Color online) Same as in Fig. 5 but for the dif-
ferential polarized cross section dσP/dΩ for parallel spins of
photon and deuteron. The insert at cos θ = 0 shows the re-
sults on a larger scale.
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FIG. 15: (Color online) Same as in Fig. 5 but for the dif-
ferential polarized cross section dσA/dΩ for antiparallel spins
of photon and deuteron. The insert at cos θ = 0 shows the
results on a larger scale.

circularly polarized photons on a target with spin paral-
lel to the photon spin (left panel), the middle panel σA,
the one for antiparallel spins of photon and target, and
the right panel the spin asymmetry σP − σA. The lower
part in Fig. 17 shows the corresponding ratios to the
total photo-absorption cross sections and their difference
with respect to the IA value. In contrast to the dou-
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FIG. 16: (Color online) Same as in Fig. 5 but for the dif-
ferential polarized cross section difference d(σP

− σA)/dΩ for
parallel and antiparallel spins of photon and deuteron. The
insert at cos θ = 0 shows the results on a larger scale.

bly polarized differential cross sections, one notes here
that the doubly polarized total cross sections and their
difference are much less affected by rescattering effects.
In fact, the dotted, dashed, and solid curves, represent-
ing the influence of IA, IA+FOR, and IA+FOR+TBM,
respectively, appear almost indistinguishable. It is also
obvious that σA is much larger than σP and, therefore,
the spin asymmetry σP − σA has negative values. The
lower part in Fig. 17 shows in general a weak influence
of rescattering effects.

H. The Helicity E-Asymmetry

In this subsection, we discuss the helicityE-asymmetry

of the reaction ~γ ~d → π0d near the η-threshold [25]. The
helicity dependent photo-absorption cross sections for
parallel and antiparallel spins of photon and deuteron
are well suited to verify the GDH sum rule [37] and give
contributions to the helicity E-asymmetry. This helicity
asymmetry appears as an interference between the am-
plitudes with different parity-exchange properties.
The helicity E-asymmetry for fixed c.m. pion angles

of cos θ = 0, −0.65, −0.75, and −0.85 are plotted in
Fig. 18 versus photon energy. The dotted, dashed, and
solid curves represent the results of IA, IA+FOR, and
IA+FOR+TBM, respectively. At cos θ = 0, the effect of
FOR and TBM is rather small and the main contribution
to the E-asymmetry comes from the IA term. In this
case, the E-asymmetry begins with negative values at
Eγ = 500 MeV due to higher positive values in dσP /dΩ
and increases with increasing photon energy. At extreme
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FIG. 17: (Color online) The helicity dependent total photo-absorption cross sections of ~γ ~d → π0d for circularly polarized
photons on a longitudinally polarized deuteron target with spin parallel σP (upper panel: left) and antiparallel σA (upper
panel: middle) to the photon spin as functions of photon lab-energy. The upper right panel shows the difference (σP

− σA),
i.e., the deuteron spin asymmetry of total photo-absorption cross section. Curve conventions as in Fig. 5. The lower panels
show the corresponding ratios to the cross sections with respect to the IA value.
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FIG. 18: (Color online) Same as in Fig. 5 but for the helicity

E-asymmetry of ~γ ~d → π0d.

backward angles, the E-asymmetry decreases with in-
creasing photon energy until a minimum value is reached
at about Eγ = 650 MeV when only IA is considered.
Then, it increases until a broad structure is obtained and
decreases again.
Considering the FOR and TBM contributions leads,

at extreme backward direction, to a strong enhancement
for photon energies between 600 and 800 MeV. In this
case, one observes a very strong cancellation between
FOR and TBM terms which becomes stronger with in-
creasing pion angles. At cos θ = −0.75, it is obvious that

the IA calculation (dotted curve) lies between IA+FOR
(dashed curve) and IA+FOR+TMB (solid curve) pre-
dictions. This is not valid at higher and lower pion
angles. The inclusion of TBM leads at cos θ = −0.85
to a very strong cancellation which is much smaller at
cos θ = −0.65.

I. Contribution of γd → π0d to the Deuteron GDH

Integral

The GDH sum rule relates the difference between the
two photo-absorption cross sections σP and σA to the
anomalous magnetic moment of a particle. For a particle
of mass M , charge eQ, anomalous magnetic moment κ,
and spin S it reads

IGDH =

∫ ∞

0

dE′
γ

E′
γ

[
σP (E′

γ)− σA(E′
γ)
]
= 4π2κ2

e2

M2
S .

(58)

The anomalous magnetic moment for the proton is κp =
1.79 n.m. and for the neutron it is κn = −1.91 n.m..
Therefore, the numerical results for the GDH sum rule
for the proton IGDH

p (∞) = 204.8 µb and the neutron

IGDH
n (∞) = 233.2 µb.
Derivation of the GDH sum rule exclusively relies on

very general principles such as Lorentz and gauge in-
variances, unitarity, crossing symmetry, and causality of
the Compton scattering amplitude of a particle. Conse-
quently, from the experimental and theoretical points of
view, a test for various targets becomes of great interest.
The GDH sum rule can also be established for the

deuteron because the low energy theorem holds its va-
lidity for composite systems such as the deuteron. The
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FIG. 19: (Color online) Left part: The Gerasimov-Drell-
Hearn integral as a function of the upper integration limit

of the ~γ ~d → π0d reaction. Curve conventions as in Fig. 5.
Right part: Ratios of the various approximations with respect
to IA one. The green dashed and red solid curves show the rel-
ative deviations IGDH

IA+FOR/I
GDH
IA and IGDH

IA+FOR+TBM/IGDH
IA ,

respectively, as functions of photon lab-energy.

deuteron anomalous magnetic moment κd = −0.143 n.m.
is relatively small, which yields a small value for the GDH
sum rule IGDH

d (∞) = 0.65 µb. Because of its small bind-
ing energy, the deuteron has a quite extended spatial
structure. The κd is small because of an almost complete
cancellation of proton and neutron anomalous magnetic
moments in the deuteron. When we consider the small
GDH sum rule for the deuteron, we expect some can-
cellation to occur in the deuteron GDH integral as well.
Thus, different production channels contributing to the
integral must be analyzed separately to understand the
overall value of the sum.

In the present work, however, we explicitly evaluate
the contribution of γd→ π0d to the finite GDH integral
up to 900 MeV as depicted in the left panel of Fig. 19
as a function of the upper integration limit [25]. We see
that the curves representing various contributions to the
scattering amplitude appear almost indistinguishable. In
contrast to what we have found in the doubly polarized
differential cross sections and the helicity E-asymmetry,
we find that rescattering effects are negligible in the GDH
integral near the η-threshold. The reason for this stems
from the fact that the influence of rescattering effects on
the helicity-dependent total cross sections difference σP−
σA, entering the GDH integral, is also negligible (see the
upper right panel of Fig. 17). In this case, the reaction is
completely dominated by the IA contribution, the FOR
and TBM contributions are negligible. Up to an energy
of 900 MeV, a value of IGDH

IA+FOR+TBM (900 MeV)= 61.36
µb to the finite GDH integral for the deuteron is explicitly
computed by integration up to 900 MeV.

To clarify the relative size of FOR and TBM ef-
fects, we have presented in the right panel of Fig.
19 the ratios of the various approximations with
respect to IA, FGDH

IA+FOR/I
GDH
IA (dashed curve) and

FGDH
IA+FOR+TBM/IGDH

IA (solid curve), as functions of pho-
ton lab-energy. We see that the effect of the intermediate
ηNN three-body interaction is tiny.

J. Sensitivity to the Elementary γN → πN
Amplitude

In what follows, the sensitivity of the results for dif-
ferential cross section, linear photon Σ-asymmetry, target
asymmetries T11 and T2M (M = 0, 1, 2), and beam-target
asymmetry T c

10 for circularly polarized photons and vec-
tor polarized deuterons to the choice of elementary pion
photoproduction amplitude is discussed [24]. We show
results near η-threshold, using as elementary reaction
amplitudes the ones provided by the dressed electro-
magnetic multipoles of the effective Lagrangian approach
(ELA) from [49] and those obtained using the unitary iso-
bar models MAID2003 [29] and MAID2007 [30]. For the
deuteron wave function, we use the CD-Bonn potential
[38].

The first comparison (Fig. 20) shows the sensitivity
of the results for differential cross section on the elemen-
tary γN → πN amplitude using the CD-Bonn potential
[38] for the deuteron wave function. The solid (dotted)
curve in Fig. 20 shows the results of modified three-
body calculation IA+FOR+TBM using the unitary iso-
bar model MAID2007 [30] (MAID2003 [29]), whereas the
dashed curve shows the results of IA+FOR+TBM using
the dressed ELA model [49]. We found that the differen-
tial cross section presents qualitative, but not quantita-
tive, similar behaviors for different elementary operators.
As one can see, the results using different elementary op-
erators are rather different even at forward direction.

At backward direction, one sees that dσ/dΩ decreases
with increasing photon lab-energy until a minimum close
to the η-threshold is reached. Then the differential cross
section increases with increasing the photon lab-energy
until a broad plateau in the energy range 680-750 MeV is
reached and decreases again. It is clear that the computa-
tions with different elementary amplitudes are quite dif-
ferent with a larger cross section predicted using MAID
than the one obtained with ELA. In general, we obtain
smaller values using ELA than using MAID. In addition,
the plateau obtained using ELA appears as a peak at
photon energy of about 700 MeV using MAID. When
compared the results using the two versions of MAID,
we see that the results using MAID2003 and MAID2007
are still quantitatively different but not qualitatively, spe-
cially at extremely backward direction. This discrepancy
shows up the differences among elementary pion photo-
production operators. This means that the differential
cross section is sensitive to the choice of the elementary
amplitude.

For the reaction γd→ π0d at both forward and back-
ward pion angles, spin asymmetries allow one to draw
specific conclusions about details of the reaction mecha-
nism. Therefore, we present in Fig. 21 the linear pho-
ton Σ-asymmetry as a function of photon lab-energy at
various cos θ using different elementary amplitudes and
the deuteron wave function from CD-Bonn potential [38].
One sees that the values of Σ-asymmetry at cos θ=0 are
larger (in absolute size) than its values at extreme back-
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FIG. 20: (Color online) Differential γd → π0d cross section using different elementary amplitudes and the deuteron wave
function from CD-Bonn potential [38]. Curve conventions: green dashed, IA+FOR+TBM using ELA [49]; magenta dotted,
IA+FOR+TBM using MAID2003 [29]; red solid, IA+FOR+TBM using MAID2007 [30].

ward pion angles. We would like to point out that in
extremely forward and backward pion emission, i.e. for
θ = 0 and π, the Σ-asymmetry has to vanish because in
that case the differential cross section cannot depend on
the azimuthal angle φ, since at θ = 0 or π the angle φ is
undefined or arbitrary. It is also clear from Fig. 21 that
the Σ-asymmetry is sensitive to the choice of elementary
amplitude both at forward and backward directions.

If we focus our attention on the vector T11 and tensor
T2M (M = 0, 1, 2) target asymmetries, it is obvious from
Fig. 22 that similar results are obtained. Qualitatively
and quantitatively the predictions are rather different at
forward and backward directions. From a quantitative
point of view the results are very different for the vector
and tensor target asymmetries. In other words, we can
say that the MAID model provides different predictions
for the differential cross section and target asymmetries
at forward and backward pion angles. It seems that the
results of γd → π0d process are sensitive to the choice
of the elementary amplitudes than to the rescattering ef-
fects. This shows that the process γd→ π0d can serve as
a filter for the various elementary amplitudes. As in the
case of Σ-asymmetry, the T11, T21, and T22 asymmetries
have to vanish in extremely forward and backward pion
emission, i.e. for θ = 0 and π.

Fig. 23 displays the double polarization T c
10-

asymmetry of the ~γ ~d → π0d reaction as a function of
photon lab-energy at various cos θ using different elemen-
tary amplitudes and the deuteron wave function from
CD-Bonn potential [38]. The dashed, dotted, and solid
curves show the results of the asymmetry T c

10 with inclu-
sion of modified three-body calculation IA+FOR+TBM
using the dressed ELA model [49], the unitary isobar
model MAID2003 [29], and MAID2007 [30], respectively.
The T c

10-asymmetry is of important, because it deter-
mines the GDH sum rule [37]. It is very clear from Fig.

23 that the results using various elementary amplitudes
are quite different at forward and backward pion angles.
This difference is more noticeable when one compares the
dashed (ELA) with the solid (MAID2007) curves. Com-
paring the dotted (MAID2003) to the solid (MAID2007)
curves reveals that the dependence of the results on the
two MAID versions is also considerable. This means that
the T c

10-asymmetry is also sensitive to the choice of the
elementary pion photoproduction operator on the free
nucleon.

K. Dependence on Modern NN Potential Models

As next, the sensitivity of the γd → π0d observ-
ables to the choice of modern NN potential model gov-
erns the deuteron wave function is discussed [26]. We
show results for differential cross section, photon Σ-
asymmetry, vector T11 and tensor T2M (M = 0, 1, 2)
deuteron asymmetries, photon-deuteron double polar-
ization T c

10-asymmetry, and the GDH integral for the
deuteron using for the deuteron wave function the CD-
Bonn potential [38], Bonn potential (full model) [50], and
Bonn potential (OBEPQ version) [48]. For the elemen-
tary amplitude we use the MAID2007 model [30].
Fig. 24 shows the sensitivity of our results for the

differential cross section to the deuteron wave function
using the MAID2007 model [30] for the elementary am-
plitude. The solid, dashed, and dotted curves in Fig.
24 show the results of IA+FOR+TBM using the Bonn
potential (full model) [50], Bonn potential (OBEPQ ver-
sion) [48], and CD-Bonn potential [38], respectively. In
general, one sees qualitatively similar behaviors for the
differential cross section at backward pion angles. The re-
sults using various NN potential models for the deuteron
wave function are quite different, specially at the plateau
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FIG. 21: (Color online) Same as in Fig. 20 but for the linear photon Σ-asymmetry of ~γd → π0d.
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FIG. 22: (Color online) Same as in Fig. 20 but for the target asymmetries T11, T20, T21, and T22 of γ ~d → π0d.

region where sizeable differences are obtained. We found
that the results using the deuteron wave function of the
CD-Bonn potential is greater than those using Bonn po-
tential (OBEPQ version) and the latter is greater than
the ones using Bonn potential (full model). This means
that the differential cross section is also sensitive to the
choice of the NN potential model used for the deuteron
wave function.

The sensitivity of linear photon Σ-asymmetry to the
deuteron wave function is displayed in Fig. 25. At

cos θ=0, one obtains small differences between compu-
tations with different NN potential models used for the
deuteron wave function. At extreme backward pion an-
gles, one can see that the difference between curves is
quite large, in particular at photon lab-energies very close
to η-threshold. At η-threshold energy, the solid curve
which represents the results using the old full-Bonn po-
tential is fare from other curves. This means that the
Σ-asymmetry is sensitive to the choice of NN potential
model governs the deuteron wave function.
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FIG. 23: (Color online) Same as in Fig. 20 but for the double polarization T c
10-asymmetry for circular polarized photons and

oriented deuterons of ~γ~d → π0d.
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FIG. 24: (Color online) Differential γd → π0d cross section using different deuteron wave functions and the elementary
amplitude from MAID2007 [30]. Curve conventions: green dashed, IA+FOR+TBM using Bonn potential (OBEPQ version)
[48]; magenta dotted, IA+FOR+TBM using CD-Bonn potential [38]; red solid, IA+FOR+TBM using Bonn potential (full
model) [50].
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FIG. 25: (Color online) Same as in Fig. 24 but for the linear photon Σ-asymmetry of ~γd → π0d.

If we focus our attention on the vector T11 and ten-
sor T2M (M = 0, 1, 2) target asymmetries, it is obvious
from Fig. 26 that similar results are obtained. Qual-
itatively and quantitatively the predictions are rather
different at forward and backward directions. From a
quantitative point of view the results are very different
for the tensor target asymmetry T20. In other words, we
can say that the MAID model provides different predic-
tions for the differential cross section and tensor target

spin T20-asymmetry at forward and backward pion an-
gles. It seems that the results of γd → π0d process are
sensitive to the choice of the elementary amplitudes and
deuteron wave functions than to the rescattering effects.
This shows that the process γd → π0d can serve as a
filter for the various elementary amplitudes and different
NN potential models used for deuteron wave function.

Fig. 27 displays the role of the double polarization

T c
10-asymmetry of the ~γ ~d→ π0d reaction as a function of
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FIG. 26: (Color online) Same as in Fig. 24 but for the target asymmetries T11, T20, T21, and T22 of γ ~d → π0d.

photon lab-energy at various cos θ on the choice of NN
potential model used for the deuteron wave function. The
solid, dashed, and dotted curves in Fig. 27 show the re-
sults of IA+FOR+TBM using the Bonn potential (full
model) [50], Bonn potential (OBEPQ version) [48], and
CD-Bonn potential [38], respectively. In general, one sees
that the results using various NN potential models for
the deuteron wave function are quite different, specially
at energies very close to η-threshold. We found that the
results using the deuteron wave function of the CD-Bonn
potential is different from those using Bonn potential
(OBEPQ version) and Bonn potential (full model). This
means that the double polarization T c

10-asymmetry for
circular polarized photons and oriented deuterons is also
sensitive to the choice of the NN potential model used
for the deuteron wave function. As already mentioned
above, this asymmetry is of particular interest, because
it is related to the spin asymmetry σP −σA which deter-
mines the GDH sum rule [37].
In Fig. 28 we show the helicity-dependent differen-

tial cross section difference d(σP − σA)/dΩ (upper part)
and the E-asymmetry (lower part) as functions of photon
energy at different values of cos θ using the MAID2007

model [30] for the elementary pion photoproduction op-
erator. The dotted, dashed, and solid curves in Fig. 28
show the results of IA+FOR+TBM using the deuteron
wave function of the CD-Bonn potential [38], Bonn po-
tential (OBEPQ version) [48], and Bonn potential (full
model) [50], respectively. It is clear that the results us-
ing various NN potential models for the deuteron wave
function are quite different. Even at cos θ = 0, small
differences between results with different deuteron wave
functions is obtained. This discrepancy is more notice-
able at photon energies around Eγ = 750 MeV and ex-
treme backward pion angles, and shows up the differences
among deuteron wave functions.
If we focus our attention on the helicity-dependent to-

tal photoabsorption cross section difference σP −σA (left
panel in Fig. 29), we see that the curves computed using
different deuteron wave functions seem similar. However,
these computations provide quite different results for the
GDH integral as shown in the right panel of Fig. 29. We
obtain larger values using CD-Bonn and OBEPQ poten-
tial models than using Bonn (full model).
The explicit evaluation of the contributions from pion

and eta production to the finite GDH integral for the
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FIG. 27: (Color online) Same as in Fig. 24 but for the double polarization T c
10-asymmetry for circular polarized photons and

oriented deuterons of ~γ~d → π0d.
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FIG. 28: (Color online) Same as in Fig. 24 but for the differential polarized cross section difference d(σP
− σA)/dΩ for parallel

and antiparallel helicity states of photon and deuteron (upper part) and the helicity E-asymmetry (lower part) of ~γ ~d → π0d.
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deuteron up to 1.5 GeV was performed in Ref. [51]. Up
to an energy of 900 MeV, a value of about 53 µb was
found for the contribution of the γd → π0d reaction. In
the present work, we computed a large positive contribu-
tion, IGDH

IA+FOR+TBM (900 MeV)= 61.36 µb, to the value
of the finite GDH integral for the deuteron integrated up

to 900 MeV. The difference between both values seems
likely to be due to the fact that we used a different NN
potential model for the deuteron wave function. Also,
the MAID model is used for the elementary pion pho-
toproduction operator in both cases. We would like to
mention that the Bonn potential (full model) [50] is orig-
inally written in p-space and is energy-dependent that
makes its applications in nuclear calculations problem-
atic. To resolve some of the problems, a parameteriza-
tion of the potential in terms of OBE’s in both p-space
and r-space is given, which is always called OBEPQ po-
tential [48]. This potential is energy-independent that in
turn simplifies its applications in nuclear structure and
nucleon-nucleus scattering calculations. It includes the
tensor component which is certainly very important in
the energy region of large momentum transfers. The CD-
Bonn potential [38] is an improved and updated version
of the Bonn potential (full model) [50] and the OBEPQ
potential [48].

We present in Table I the extracted values of the GDH
integral up to 900 MeV for the γd → π0d reaction
using MAID2007 as elementary operator and different
NN potential models for the deuteron wave function.
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TABLE I: Contribution of coherent pion photoproduction on
the deuteron to the finite GDH integral explicitly integrated
up to Eγ = 900 MeV in µb using different NN potential
models for the deuteron wave functions and the elementary
pion photoproduction operator from MAID2007 model [30].

NN potential model IGDH
IA IGDH

IA+FOR IGDH
IA+FOR+TBM

CD-Bonn [38] 61.27 61.38 61.36

OBEPQ [48] 61.56 61.67 61.66

Bonn (full model) [50] 53.83 53.94 53.93

After including rescattering effects, we find that CD-
Bonn: IGDH

IA+FOR+TBM (900 MeV)= 61.36 µb, OBEPQ:

IGDH
IA+FOR+TBM (900 MeV)= 61.66 µb, whereas Bonn (full

model): IGDH
IA+FOR+TBM (900 MeV)= 53.93 µb. The lat-

ter value is in agreement with the value IGDH
γd→π0d(900

MeV)≃ 53 µb predicted in Ref. [51] in which also the
Bonn potential (full model) was used. This difference in
the values of the deuteron GDH integral - in spite of the
tiny dissimilarity shown in the left panel of Fig. 29 - re-
flects its sensitivity to the choice of NN potential model
used for the deuteron wave function.

The deviation of the obtained results is quite large for
different deuteron wave functions. An important source
for the origin of this strong dependence is the tensor force
between two nucleons. A measure of the strength of the
tensor force is expressed in terms of the D-state probabil-
ity PD obtained for the deuteron [52]. The D-state prob-
abilities for the NN potentials used in the present work
are PD = 4.25%, 4.38% and 4.85% for the Bonn (full)
[50], Bonn (OBEPQ) [48], and CD-Bonn [38] potentials,
respectively. The results using the deuteron wave func-
tion of the CD-Bonn potential, which has a larger value of
PD in comparison to other potentials, are quite different.
It was shown by various authors [12, 15] that the spin ob-
servables for the γd→ π0d process are quite sensitive to
the deuteron wave function. It was reported in Ref. [12]
that, in the photon energy range 600-700 MeV, the dif-
ferential cross section and the photon Σ-asymmetry are
highly sensitive to the deuteron wave function. The role
of the 3D1-configuration in the deuteron wave function
has also been studied by Kamalov et al. [15]. They found
that the D-wave contribution becomes manifest at pion
angle θ > 90◦ for photon energies Eγ > 300 MeV. The
tensor target asymmetries were found to be very sensi-
tive to the deuteron D-state component, in particular in
the region of 90◦ < θ < 150◦.

From the preceding discussion it is apparent that com-
plete ηNN three-body calculation and the choices of both
the elementary operator and deuteron wave function have
a visible effect on the differential cross section and spin
asymmetries at extreme backward pion angles.

L. Comparison with Experimental Data and Other

Theoretical Models

We now turn to a comparison of our results for the
differential cross section and the linear photon asymme-
try with available experimental data and other theoret-
ical models. Fig. 30 shows a comparison of the results
for differential cross section with the experimental data
from [21] and CLAS Collaboration [3, 4]. The calcula-
tion shown by the dashed curve obtained with the am-
plitude of the IA alone, while the one shown by the solid
curve obtained with the modified three-body amplitude,
IA+FOR+TBM. It is clear from Fig. 30 that a satisfac-
tory agreement between our calculation and the experi-
mental data is obtained at forward pion angles near the
η-production threshold.

At extremely backward pion angles, one can see that
our predictions in the pure IA and with inclusion of mod-
ified three-body calculation cannot describe the experi-
mental data from [21], since major discrepancies are ev-
ident. Compared to the experimental data from CLAS
Collaboration [3, 4], we also found that the theory under-
estimates the data for differential cross section at back-
ward direction by about one order of magnitude. The
same conclusions were drawn by the authors in Ref. [17],
where the differential cross section was also far below the
data in the same kinematical region.

Now, we turn to the differences obtained between our
results and the ones of Ref. [17] for differential cross
section. To make the comparison very clear we show
in Fig. 31 the modified three-body calculation of the
differential cross section. The dashed curve shows the
results of IA+FOR+TBM using the MAID2003 ampli-
tude [29] for the elementary γN → πN process and the
Bonn potential (OBEPQ version) [48] for deuteron wave
function (the same as in Ref. [17]), while the solid curve
displays the corresponding results using the MAID2007
amplitude for the former and the CD-Bonn potential [38]
for the latter. Our results given by the dashed curve are
in good agreement with the corresponding ones shown in
Fig. 3 of Ref. [17]. Nevertheless, we obtain big differ-
ences between the dashed and solid curves, specially at
extremely backward pion angles. We would like to men-
tion that upgrading MAID2003 to MAID2007 produces
differences that may be as larger as 30% at backward pion
angles and higher energies. And the use of the CD-Bonn
NN potential for the deuteron wave function doubles the
cross section in this region. This means in particular that
the results of differential cross section are sensitive to el-
ementary amplitudes and deuteron wave functions.

To the best of our knowledge, very few data points
are available for the linear photon Σ-asymmetry in the
kinematics of the current situation, but with regard to
the deuteron and photon-deuteron asymmetries, there
are no data exist in the kinematic region of our inter-
est in the present work. We show in Fig. 32 a com-
parison between our IA+FOR+TBM prediction for the
Σ-asymmetry (solid curve) and the experimental data
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FIG. 30: (Color online) The differential γd → π0d cross section, using the logarithmic scale, as a function of photon lab-energy
at various values of cos θ using MAID2007 [30] and deuteron wave function from the CD-Bonn potential [38]. The dashed and
solid curves show the IA and IA+FOR+TBM calculations, respectively. Experimental data are from [21] (open circles), CLAS
Collaboration [3] (open squares), and CLAS Collaboration [4] (solid circles).
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FIG. 31: (Color online) The role of complete three-body calculation on the differential γd → π0d cross section, using the
logarithmic scale, as a function of photon lab-energy at various cos θ. Curve conventions: green dashed, IA+FOR+TBM
using MAID2003 [29] and deuteron wave function from Bonn potential (OBEPQ version) [48]; red solid, IA+FOR+TBM using
MAID2007 [30] and deuteron wave function from CD-Bonn potential [38].

from YerPhi Collaboration [5] at θ=130◦ as a function
of photon lab-energy. In Fig. 32 we also exhibit our re-
sults with the model predictions of Imanishi et al. [53]
(dotted curve). This model is based on the Glauber mul-
tiple scattering theory and takes into account the contri-
butions from single scattering diagram (IA⋆) from Ref.
[54], double scattering diagram with intermediate πN -
rescattering (DS) and that from possible dibaryon reso-
nance (DB) from Ref. [53].

We found that adding the contribution of the interme-
diate ηNN three-body interaction to the scattering am-
plitude does not remove the discrepancy with the exper-
imental data. Although, a noticeable influence of rescat-
tering effects is found, one notes that the predictions can
hardly provide a reasonable description of the data. The
theory is overestimated in the maximum and at lower
energies but slightly underestimated in the energy region
above Eγ= 800 MeV. It is also clear that the experimen-
tal data on the Σ-asymmetry do not agree with the pre-
dictions of Imanishi et al. [53], in particular at energies

above Eγ=750 MeV. In the region Eγ <750 MeV, better
agreement was obtained in [53]. The authors of Ref. [53]
argue that the main reason of their disagreement with
the data could be due to the neglected contributions from
three- and higher-order scattering terms.

Comparing our results (solid curve) with the predic-
tions of Imanishi et al. [53] (dotted curve), we obtain
a strong disagreement, in particular at photon energies
above Eγ=700 MeV. Their predictions at lower energies
are similar to ours, also larger values at all energies are
obtained in our case. The Σ-asymmetry is found to be
positive in both cases until Eγ ≃750 MeV. At higher en-
ergies the Σ-asymmetry change the sign in the case of
Imanishi et al. predictions [53] which is not the case in
ours. This can occur through differences in the elemen-
tary amplitude and deuteron wave function. In addition,
the intermediate ηN -rescattering, which was neglected in
[53], is found to be important near η-threshold (see, for
example, Refs. [16, 17, 22]).

We now turn to a comparison of our results for the
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FIG. 32: (Color online) The beam asymmetry Σ for lin-
early polarized photon of ~γd → π0d as a function of pho-
ton lab-energy at θ = 130◦. The red solid curve is the
IA+FOR+TBM prediction of the present work, while the ma-
genta dotted curve is the IA⋆+DS+DB calculation (see text)
of Refs. [53, 54] (based on the model of Ref. [21]). Experi-
mental data are from YerPhi Collaboration [5].

tensor target spin asymmetries T20, T21, and T22 with
available experimental data. There is a reasonable inter-
est and demand in the experimental community for re-
fined calculations and effects which have not been tradi-
tionally included in the treatment of two-body deuteron
photodisintegration and coherent π0-photoproduction on
the deuteron [6–8]. The first data on tensor target spin

asymmetries T20, T21, and T22 of the γ ~d→ π0d reaction
have been measured at the VEPP-3 storage ring [6]. Fig.
33 shows a comparison of the results for the tensor target
spin asymmetries T20, T21, and T22 with the experimen-
tal data from VEPP-3 [6]. These spin asymmetries are
presented as functions of photon energy at θ=90◦-145◦

(left panels) and as functions of pion angle at Eγ=250-
450 MeV (right panels). The solid curve in Fig. 33 shows
the results of IA+FOR+TBM using the MAID-2007 am-
plitude [30] for the elementary operator and the Bonn
potential (OBEPQ version) [48] for the deuteron wave
function. It is clear from Fig. 33 that the predictions
with ηNN three-body contribution can hardly provide a
reasonable description of the data. The best agreement is
obtained in the case of T20-asymmetry. In the case of T21-
asymmetry, the theory is underestimated at pion angles
below 140◦, but it is slightly overestimated at extremely
backward angles. It is noted here that the accuracy of the
experimental data [6] was not high because the detection
system of the two-body deuteron photodisintegration ex-
periment was not optimal to register neutral pions [7].

Recently, more precise data for the T20-asymmetry
have been measured [7]. Our results for the asymme-
try T20 as a function of photon energy at fixed values of
pion angle are plotted in Fig. 34 in comparison with the
experimental data from VEPP-3 [7]. The solid curve cor-
responds to the IA+FOR+TBM calculations using the
MAID-2007 model [30] for the elementary amplitude and
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FIG. 33: (Color online) Tensor target spin asymmetries T20,

T21, and T22 for γ ~d → π0d as functions of photon lab-energy
Elab

γ at pion angle θcmπ0 = 90◦ − 145◦ (left panels) and as

functions of θcmπ0 at Elab
γ = 250−450 MeV (right panels). The

solid curve corresponds to the IA+FOR+TBM calculation
using the MAID-2007 model [30] for the elementary amplitude
and the Bonn potential (OBEPQ) [48] for the deuteron wave
function. Experimental data are from VEPP-3 [6].

the Bonn potential (OBEPQ) [48] for the deuteron wave
function. It is observed that the IA+FOR+TBM calcu-
lations and the experimental data are consistent in the
photon energy region below 400 MeV. At Eγ > 400 MeV,
one sees that the calculations slightly underestimate the
data.

Figure 35 shows a comparison between our results for
the T20-asymmetry as a function of pion angle at fixed
values of photon energy and the experimental data from
the VEPP-3 storage ring [7]. The solid curve corresponds
also here to the IA+FOR+TBM calculations using the
MAID-2007 model [30] for the elementary amplitude and
the Bonn potential (OBEPQ) [48] for the deuteron wave
function. The best agreement between theory and ex-
periment is seen at photon energies close to the ∆(1232)-
resonance region. At photon energies below (above) 340
MeV, one sees that the theory overestimates (underesti-
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deuteron wave function. Experimental data are from VEPP-3 [7].
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FIG. 36: (Color online) The tensor target spin asymmetry
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γ
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θcmπ0 = 120◦ − 140◦ (right panel). The solid curve corre-
sponds to the IA+FOR+TBM calculation using the MAID-
2007 model [30] for the elementary amplitude and the Bonn
potential (OBEPQ) [48] for the deuteron wave function. Ex-
perimental data are from VEPP-3 [8].

mates) the experimental data at backward pion angles.

Most recently, much more precise data for the T20
asymmetry in coherent photoproduction of π0-meson
from the deuteron has been measured in the VEPP-3
storage ring [8]. The asymmetry T20 is plotted in Fig. 36
as a function of photon energy at pion angle in regions
100◦-120◦ (left panel) and 120◦-140◦ (right panel) in com-
parison with the recent experimental data from Ref. [8].
The solid curve corresponds again to the IA+FOR+TBM
calculations using the MAID-2007 model [30] for the el-
ementary amplitude and the Bonn potential (OBEPQ)
[48] for the deuteron wave function. One can see from
Fig. 36 that a good agreement between our predictions
for IA+FOR+TBM and experimental data is obtained
at photon energies less than 400 MeV. At photon ener-
gies above 400 MeV, one can see that the calculations of
IA+FOR+TBM contradict the data. In this case, the
predictions considerably underestimate the experimental
data.

Recently, the helicity E-asymmetry of π0-
photoproduction on the free proton has been measured
by the CBELSA/TAPS Collaboration [55]. It was found

Darwish E.M.         Quarterly Physics Review, vol. 4, issue 2, April 2018 Page 30 of 38

Copyright 2018 KEI Journals. All Rights Reserved http://journals.ke-i.org/index.php/qpr



-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

E
-a

sy
m

m
et

ry

cos θ

Eγ =730 MeV

CBELSA/TAPS
MAID-2007

FIG. 37: (Color online) The helicity E-asymmetry of ~γ~d →
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curve shows the results of ~γ~p → pπ0 using the MAID2007
model [30]. The experimental data of π0-photoproduction off
free protons are taken from the CBELSA/TAPS Collabora-
tion [55].

that the E-asymmetry revealed remarkable differences
in the predictions of MAID2007 model [30] even in the
second resonance region around Eγ=750 MeV. The
origin of these discrepancies remains unclear. Therefore,
we displayed in Fig. 37 the E-asymmetry as a function
of cos θ at Eγ = 730 MeV in comparison with the experi-
mental data of ~γ~p→ π0p from [55]. The dotted, dashed,
and solid curves show the results of IA, IA+FOR, and
IA+FOR+TBM, respectively. The double-dashed curve
displays the results of π0-photoproduction on the free
proton using MAID2007 model [30]. At very small
pion angles, the E-asymmetry is mostly determined
by the elementary amplitude. This is not the case at
backward angles, where sizeable differences between the
results on the nucleon and deuteron are obtained. When
rescattering effects are considered, the E-asymmetry
exhibits a peak structure which is due to the presence of
the S11(1535) resonance in the ηN -rescattering diagram.
A very big difference between IA and IA+FOR is
obtained at θ = 180◦. The inclusion of TBM reduces
this difference to about one half. The large differences
between experimental data and predictions shown in
Ref. [55] are also observed here even if the FOR and
TBM effects are taken into account. These differences
may be due to interference with contributions from
resonances other than S11(1535). It was shown in
[55] that the E-asymmetry is highly sensitive to the
contributions from s-channel resonances.

Possible explanation of the existing discrepancy be-
tween our predictions and the experimental data at high
photon energies can be attributed to the contributions
from two-body mechanisms in the photoproduction am-
plitude, e.g. meson-exchange current, isobar configura-
tion in the deuteron wave function, etc, and other res-

onance amplitudes besides the S11(1535) contribution.
One might expect that the influence of these effects
maybe important for the theoretical description of tensor
target spin asymmetries. For example, it was shown in
Ref. [55] that the helicity E-asymmetry is very sensitive
to the contributions from s-channel resonances. In ad-
dition, meson-exchange currents were found to be quite
significant for π+-photoproduction on 3He in Ref. [56].
The role of two-body effects from hadronic rescattering
and electromagnetic meson-exchange currents on coher-
ent η-photoproduction from the deuteron in the region
of the S11(1535) resonance was investigated in [57]. It
was found that two-body effects give significant contri-
butions to polarization observables of the γd→ ηd reac-
tion at backward angles and higher energies, as there are
several observables which are very sensitive to hadronic
rescattering and meson-exchange currents. It is intu-
itively clear that as long as small pion angles are con-
sidered where the two-nucleon effects are minimal, the
magnitude of the spin asymmetries should be mostly de-
termined by the elementary amplitude. With increasing
pion angles, small internuclear distances come into play
and thus corrections to the IA calculation from the two-
nucleon mechanisms become more and more important.
It is also clear that the πN elastic scattering cross sec-

tions are much larger than the πN → ηN cross sections,

and N(1520)32
−

also strongly couples to the πN chan-
nel in the considered energy region. Therefore, the two-

step processes including N(1520)32
−

and the three-body
πNN processes are expected to have contribution similar

to N(1535)12
−
and three-body ηNN processes.

IV. CONCLUSIONS AND OUTLOOK

The main object of this review was to incorporate
the rescattering amplitudes in the formalism for coher-
ent π0-photoproduction from the deuteron near the η-
production threshold to study the effects of rescattering
on unpolarized differential and total cross sections as well
as on various polarization observables. For the elemen-
tary γN → π0N amplitude, the realistic unitary isobar
model MAID2007 [30] has been used. The deuteron wave
function used in our computation is obtained from the
realistic high-precision CD-Bonn potential [38]. As for
the deuteron amplitude, we have considered in addition
to the pure IA also the two-step process with πN - and
ηN -rescattering and all terms in the multiple scatter-
ing series within a three-body model. For the hadronic
and electromagnetic two-body amplitudes taken into ac-
count in the calculation of the rescattering diagrams, only
the S11(1535)-resonance was considered in the π- and
η-exchange contributions. The three-body problem for
the intermediate ηNN system was solved only for the
lowest s-wave three-body configuration 1S0 (Jπ = 0−;
T = 1). The π- and η-photoproduction reactions on the
nucleon as well as their interactions with nucleons were
assumed to be proceed exclusively via the extraction of
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the S11(1535)-resonance.

We have presented results for the unpolarized differ-
ential and total crosse sections, all beam, target, and
beam-target spin asymmetries corresponding to polar-
ized photons and/or oriented deuterons, the helicity-
dependent differential and total cross sections, the helic-
ity E-asymmetry, and the deuteron GDH integral. The
sensitivity of our results to the elementary γN → π0N
amplitude and the deuteron wave function is investi-
gated. In addition, we have compared our predictions
with the available experimental data and other theoreti-
cal models. Our main conclusions are as follows.

In general, the strongest influence of rescattering ef-
fects appears at extreme backward pion angles in the
photon energy range Eγ ≃ 600-800 MeV. We found that
already in the IA a shoulder appears in the differential
cross section at photon lab-energy slightly above Eγ=700
MeV. The inclusion of rescattering effects shifts the peak
position to lower energies and make it more pronounced.
Our calculations showed also that the differential cross
section is influenced by the inclusion of rescattering ef-
fects. The interference of the pure IA and complete three-
body calculation has been found very important. Thus,
we conclude that the three-body problem of the ηNN
system is of special importance for understanding the re-
action dynamics. The total cross section is found to be
much less affected by rescattering contributions. We also
found that most of spin asymmetries of the differential
cross section are sensitive to the inclusion of rescatter-
ing effects. Some asymmetries, in particular T21, T

c
11,

T c
21, T

c
22, T

l
10, and T l

2±2, seem to provide a signature of
the TBM contribution at photon energies 600-800 MeV
and extreme backward direction. Indeed, our calcula-
tions show that a broad enhancement (with the width
of the order of 100 MeV) appears in the energy behav-
ior of the spin asymmetries at backward pion angles in
the η-threshold region. This enhancement becomes more
pronounced as pion angles increases. On the contrary,
the spin asymmetries of the total cross section are found
to be much less affected by rescattering contributions.
The influence of FOR and TBM effects is quite marginal
although not negligible.

The results of the helicity-dependent differential cross
sections for parallel and antiparallel spins of photon and
deuteron as well as their difference are found to be sen-
sitive to rescattering effects. A quite strong dependence
of their results on the intermediate ηNN three-body cal-
culation is found, especially at photon energies between
600 and 800 MeV at extreme backward direction. As
may be expected, the role of rescattering effects in the
γd→ π0d reaction in the energy region considered in this
work is rather unimportant for the helicity-dependent to-
tal cross sections and their difference. This conclusion
is also valid for the corresponding GDH integral for the
deuteron, where the curves represent the different rescat-
tering contributions are found to be indistinguishable.
We also considered the role of rescattering effects on the
helicity E-asymmetry. As our calculation shows, the E-

asymmetry is much more sensitive to rescattering effects
at extreme backward pion angles. Within our model, we

also evaluated the contribution of the ~γ~d→ π0d reaction
to the GDH integral for the deuteron integrated up to
900 MeV. A values of IGDH

IA+FOR+TBM (900MeV ) = 61.36
µb is obtained. The sensitivity of the obtained results for
the deuteron GDH integral to the choice of NN potential
model used for the deuteron wave function is investigated
and a large dependence is found.
We have also studied the influence of the elementary

γN → πN amplitude and the deuteron wave function
on the differential cross section and polarization observ-
ables. Calculations showed that these observables are
sensitive to the choice of both the elementary amplitude
and the deuteron wave function than to the rescatter-
ing effects. In many cases the deviation among results
obtained using different elementary amplitudes and var-
ious deuteron wave functions is very large. Indeed, we
have shown that updating the unitary isobar MAID2003
model [29] to MAID2007 [30] produces differences that
may be as large as 30% at extreme backward pion an-
gles and higher energies. And the use of CD-Bonn NN
potential [38] for deuteron wave function doubles the dif-
ferential cross section in this kinematic region. Thus,
the process γd → π0d can serve as a filter for different
elementary amplitudes and various deuteron wave func-
tions since its predictions for differential cross section and
spin asymmetries show very different values when one
varies the elementary amplitudes and/or the deuteron
wave functions employed.
In comparison with the experimental data from [3, 4,

21] for the differential cross section and from YerPhi Col-
laboration [5] for the linear photon asymmetry at pion
angle of 130◦, major discrepancies are found, specially at
extremely backward pion angles. It was shown that the
inclusion of a full three-body calculation can in no way
resolve the discrepancy between the experimental data
and theoretical prediction. We have also compared our
results for the linear photon asymmetry at pion angle of
130◦ with with the old predictions of Imanishi et al. [53]
and significant differences are also found.
As already mentioned in the previous section, a pos-

sible source for the existing differences between our pre-
dictions for dσ/dΩ, Σ, and T2M (M = 0, 1, 2) and the ex-
perimental data could be the neglected effects from two-
nucleon mechanisms in the photoproduction amplitude,
e.g. meson-exchange current, isobar configuration in the
deuteron wave function, etc, and other resonance am-
plitudes besides the S11(1535) contribution. One might
expect that these influence maybe particularly important
for the theoretical description of spin asymmetries. For
example, meson-exchange currents were found to be quite
significant for π+-photoproduction on 3He in Ref. [56].
It is also clear that the πN elastic scattering cross sec-
tions are much larger than the πN → ηN cross sections,

and N(1520)32
−
also strongly couples to the πN channel

in the considered energy region. Therefore, the two-step

processes including N(1520)32
−
and the three-body πNN

Darwish E.M.         Quarterly Physics Review, vol. 4, issue 2, April 2018 Page 32 of 38

Copyright 2018 KEI Journals. All Rights Reserved http://journals.ke-i.org/index.php/qpr



processes are expected to have comparable contribution

like N(1535)12
−
and three-body ηNN processes. Indeed,

we cannot assert that the suggested effects are sufficient
to explain the features of the entire set of available data.
If such effects are really quite important, their inclusion
would tend to diminish the relative size of the dσ/dΩ
peak and its manifestation. In this case, we will have
to face again the same question about the origin of the
cusp structure observed in the differential cross section at
backward pion angles near the threshold of η-production.
Additional significant contributions to the GDH integral
from the double-pion production channels can be ex-
pected. Such contributions for the γd→ ππNN reaction
with NN -FSI have been explicitly evaluated in [51] up
to 2.2 GeV and a value of IGDH

γd→ππNN (2.2 GeV)=159.34
µb was obtained.
In order to draw further conclusions, it would be very

desirable to have more precise experiments for spin asym-
metries of the γd→ π0d reaction around the η-threshold
region at backward direction. This clearly poses a more
detailed test of the underlying model. Therefore, there
is a way for further improvements of the present model.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR

UNPOLARIZED DIFFERENTIAL CROSS

SECTION AND VARIOUS SPIN ASYMMETRIES

Here, we list the explicit expressions for the unpolar-
ized differential cross section and the various spin asym-
metries in terms of the reduced t-matrix elements [22]:
(i) The unpolarized differential cross section

dσ0
dΩ

=
K
3

∑

m′

d
md

|tm′

d
1md

|2 . (A1)

(ii) The photon spin asymmetry for linearly polarized
photons and unpolarized deuterons

Σ
dσ0
dΩ

= −K
3

∑

m′

d
md

t∗m′

d
1md

tm′

d
−1md

. (A2)

(iii) The target spin asymmetry for vector polarized
deuterons and unpolarized photons

T11
dσ0
dΩ

=

√
2

3
Kℑm

∑

md

(t∗md1−1 tmd10

+t∗md10
tmd11) . (A3)

(iv) The target spin asymmetries for tensor polarized
deuterons and unpolarized photons

T20
dσ0
dΩ

=
K

3
√
2

∑

md

(|tmd11|2 + |tmd1−1|2

−2 |tmd10|2) , (A4)

T21
dσ0
dΩ

=

√
2

3
Kℜe

∑

md

(t∗md1−1 tmd10

−t∗md10
tmd11) , (A5)

T22
dσ0
dΩ

=
2K√
3
ℜe
∑

md

t∗md1−1 tmd11 . (A6)

(v) The beam-target spin asymmetries for circularly po-
larized photons and vector polarized deuterons

T c
10

dσ0
dΩ

=
K√
6

∑

md

(|tmd11|2 − |tmd1−1|2) , (A7)

T c
11

dσ0
dΩ

= −
√

2

3
Kℜe

∑

md

(t∗md1−1 tmd10

+t∗md10
tmd11) . (A8)

(vi) The beam-target spin asymmetries for circularly po-
larized photons and tensor polarized deuterons

T c
21

dσ0
dΩ

=

√
2

3
Kℑm

∑

md

(t∗md10 tmd11

−t∗md1−1 tmd10) , (A9)

T c
22

dσ0
dΩ

= − 2K√
3
ℑm

∑

md

t∗md1−1 tmd11 . (A10)

(vii) The beam-target spin asymmetries for linearly po-
larized photons and vector polarized deuterons

T l
10

dσ0
dΩ

=

√
2

3
Kℑm

∑

md

t∗md11 tmd−11 , (A11)

T l
11

dσ0
dΩ

= −
√

2

3
Kℑm

∑

md

t∗md1−1 tmd−10,(A12)

T l
1−1

dσ0
dΩ

=

√
2

3
Kℑm

∑

md

t∗md11 tmd−10 . (A13)
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(viii) The beam-target spin asymmetries for linearly po-
larized photons and tensor polarized deuterons

T l
20

dσ0
dΩ

=

√
2

3
Kℜe

∑

md

(t∗md10 tmd−10

−t∗md11 tmd−11) , (A14)

T l
21

dσ0
dΩ

=

√
2

3
Kℜe

∑

md

t∗md10 tmd−11 , (A15)

T l
2−1

dσ0
dΩ

=

√
2

3
Kℜe

∑

md

t∗md10
tmd−1−1 , (A16)

T l
22

dσ0
dΩ

= − K√
3

∑

md

t∗md1−1 tmd−11 , (A17)

T l
2−2

dσ0
dΩ

= − K√
3

∑

md

t∗md11 tmd−1−1 . (A18)

APPENDIX B: AN ELEMENTARY PION

PHOTOPRODUCTION OPERATOR

The invariant amplitude for pion photoproduction
from the nucleon

γ(Eγ , ~q,~ǫλ) +N(EN , ~p) → π(Eπ , ~k) +N ′(E′
N , ~p

′),(B1)

can be written as [39]

TγN→πN ′ = ū(p′)
[ 4∑

i=1

Ai(s, u, t) Γi

]
u(p), (B2)

where

s = (q + p)2 = (k + p′)2,

u = (q − p′)2 = (k − p)2,

t = (q − k)2 = (p− p′)2, (B3)

and

Γ1 = iγ5 /ǫ /q,

Γ2 = iγ5 [k · ǫ (p+ p′) · q − k · q (p+ p′) · ǫ] ,
Γ3 = iγ5

(
k · q /ǫ− k · ǫ /q

)
,

Γ4 = ǫµνρσγ
µkνǫρqσ . (B4)

The matrix γ5 and antisymmetric tensor ǫµνρσ are fixed
according to the conditions

γ5 = +
(
0 1

1 0

)
and ǫ0123 = +1. (B5)

In the spinor form, the matrix T reads

〈m2|T |λm1〉 = 〈m2|L+ i~σ · ~K|λm1〉. (B6)

Contributions of the amplitudes Ai to the matrix T (B6)
in an arbitrary frame are as follows

L1 = NN ′
[
− ~p · ~S

E+
+
~p ′ · ~S
E′

+

+ Eγ

~ǫ · ~C
E+E′

+

]
A1, (B7)

~K1 = NN ′
[
~ǫ
(
Eγ + Eγ

~p · ~p ′

E+E′
+

− ~p · ~q
E+

− ~p ′ · ~q
E′

+

)

+~q
(~p · ~ǫ
E+

+
~p ′ · ~ǫ
E′

+

)
− ~pEγ

~p ′ · ~ǫ
E+E′

+

−~p ′Eγ

~p · ~ǫ
E+E′

+

]
A1, (B8)

L2 = 0, (B9)

~K2 = 2NN ′
(
~ǫ·~p ′ p ·q−~ǫ·~p p′ ·q

)( ~p

E+
− ~p ′

E′
+

)
A2, (B10)

L3 = −NN ′ 1

E+E′
+

[
~k · ~ǫ ~q · ~C + k · q~ǫ · ~C

]
A3, (B11)

~K3 = NN ′
{(

1− ~p · ~p ′

E+E′
+

)
(~ǫ k · q + ~q ~k · ~ǫ)

+~p
[(

− Eγ

E+
+

~p ′ · ~q
E+E′

+

)
~k · ~ǫ+ ~p ′ · ~ǫ k · q

E+E′
+

]

+~p ′
[(

− Eγ

E′
+

+
~p · ~q
E+E′

+

)
~k · ~ǫ+ ~p · ~ǫ k · q

E+E′
+

]}
A3,

(B12)

L4 = NN ′ 1

E+E′
+

[
− ~ǫ · ~C Eγ(E+ + E′

+)

+~p · ~S (E′2
+ + ~p · ~p ′)

−~p ′ · ~S (E2
+ + ~p · ~p ′)

]
A4, (B13)

~K4 = NN ′
{
− ~ǫ
[
k0
(~p · ~q
E+

− ~p ′ · ~q
E′

+

)

−Eγ

(~p · ~k
E+

− ~p ′ · ~k
E′

+

)
+
~p ′ · ~q~k · ~p− ~p · ~q ~k · ~p ′

E+E′
+

]

+~q
[
k0
(~p · ~ǫ
E+

− ~p ′ · ~ǫ
E′

+

)
− ~ǫ · ~p~k · ~p ′ − ~ǫ · ~p ′ ~k · ~p

E+E′
+

]

−~k
[
Eγ

(~p · ~ǫ
E+

− ~p ′ · ~ǫ
E′

+

)
+

~C · ~S
E+E′

+

]}
A4, (B14)

where ~S = ~q × ~ǫ, ~C = ~p × ~p ′, E± = E ±MN , E′
± =

E′ ±MN , N =
√
E+/2MN , and N ′ =

√
E′

+/2MN .
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The photoproduction operator in the c.m. frame has
the well-known form [40]

〈m2|T ∗
γN→πN |λm1〉 =

4πWγN

MN

〈m2 | i~σ · ~ǫ ∗λ F1

+~σ · ~̂k ∗ ~σ · (~̂q∗ × ~ǫ ∗λ) F2

+i~σ · ~̂q∗ ~̂k ∗ · ~ǫ ∗λ F3

+i~σ · ~̂k ∗ ~̂k ∗ · ~~ǫ ∗λ F4 |m1〉,
(B15)

where WγN =
√
s and the superscript asterisk is used

for the corresponding quantities in the γN c.m. frame.
A comparison of the above Li and Ki equations in the
c.m. frame with Eq. (B15) gives the following relation
between the amplitudes Ai and Fi




A1

A2

A3

A4


 =

4π

k∗E∗
γ




W+ −W− −2MN
k·q
W−

−2MN
k·q
W+

0 0 1 −1

1 1 W−W+−k·q
W−

W−W+−k·q
W+

1 1 − k·q
W−

− k·q
W+




×




√
E−E′

−
1

W−

F1√
E+E′

+
1

W+
F2√

E+

E′

+

1
W+

F3√
E−

E′

−

1
W−

F4



. (B16)

where W± =WγN ±MN . One should emphasize that all
variables in Eq. (B16) are taken in the c.m. frame, in
particular

E∗
γ =

s−M2
N

2
√
s

=
W+W−

2WγN

=
√
E+E−, (B17)

k∗ =

√
[W 2

γN − (MN +mπ)2][W 2
γN − (MN −mπ)2]

2WγN

=
√
E′

+E
′
−. (B18)

APPENDIX C: THREE-BODY TREATMENT OF

THE ηNN INTERACTION

In this appendix we briefly review the basic features
of three-body techniques for the application to the full
dynamics in the intermediate ηNN three-body system
[41]. The ηNN system consists of two nucleons, N1 and
N2, and an η-meson, which will be denoted as particle
1, 2 and 3, respectively. In the c.m. frame the basic
free particle states |~pi, ~qi〉 will be characterized as usual
by a pair of vectors ~pi and ~qi, where ~pi is the relative
momentum of a (jk) pair (j 6= i 6= k) and ~qi denotes

the relative momentum of the unpaired particle i with
respect to the c.m. frame of the pair (jk).
In order to approximate the three-body equations in

such a way that they become practically solvable, it is
customary to introduce a separable ansatz for each two-
body interaction. In our case this approximation has also
a physical motivation because of the strong dominance of
the s-wave pole terms in the low-energy ηN - and NN -
scattering matrices. Thus, we will assume that the two-
body driving forces can be approximated by rank-one
separable potentials, which, when regarded as operators
in the three-body Hilbert space, have the form

vi = γi

∫
d3q

(2π)3
|i, ~q 〉〈i, ~q | , (C1)

with i being the channel index. In detail one has

|i, ~q 〉 =





|N1(~q ), (N2η)〉 for i = 1 ,

|N2(~q ), (N1η)〉 for i = 2 ,

|η(~q ), (N1N2)〉 for i = 3 .

(C2)

Here the ket |i, ~q 〉 = |i〉 ⊗ |~q 〉 is defined such that

〈~p, ~q |i, ~q ′ 〉 = 〈~p |i〉〈~q |~q ′ 〉 = (2π)3 ǫi(~q ) δ(~q − ~q ′ ) fi(~p )
(C3)

with

ǫi(~q ) =





2Ei(~q ) for i = 3 ,
Ei(~q )

MN

for i = 1, 2 ,
(C4)

where fi(~p ) = 〈~p |i〉 is the usual vertex function of the
separable representation. For i = 3 the Pauli principle
for the nucleons is already incorporated, i.e., P12|3, ~q 〉 =
−|3, ~q 〉, where P12 is the nucleon exchange operator.
The asymptotic channel wave function, describing the

free motion of a particle “i” with momentum ~q relative
to the interacting pair (jk), is given by

|φi(W, ~q )〉 = GηNN (W )|i, ~q 〉 , (C5)

where GηNN (W ) is the free ηNN Green’s function de-
pending on the total three-body energy W . For the
moment being we drop spin-isospin indices. Then, ex-
pressing the separable ηN - and NN -scattering matrices,
acting in three-particle space, in terms of the two–body
matrix elements, we find

〈~p ′, ~q ′|ti(W )|~p, ~q 〉 = (2π)3δ(~q ′ − ~q )〈~p ′|ti(Wi(W, ~q ))|~p 〉
= (2π)3δ(~q ′ − ~q )f∗

i (~p
′)

× τi(Wi(W, ~q ))fi(~p ) , (C6)

where the propagator of a pair (jk) in the presence of a
spectator “i” reads

τi(Wi) =
[ 1
γi

− 1

(2π)3

∫
d3p

ǫj(~p ) ǫk(~p )

× |fi(~p )|2
Wi − Ej(~p )− Ek(~p ) + iǫ

]−1

. (C7)
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Here Wi(W, ~q ) denotes the invariant mass of the subsys-
tem (j, k), defined by putting the spectator particle “i”
on mass shell, i.e.,

Wi(W, ~q ) =
√
W 2 − 2W Ei(~q ) +M2

i . (C8)

For the particle energies we use the relativistic expres-
sions Ei(~p ) =

√
p2 +M2

i . The separable ansatz leads to
a system of coupled equations of the familiar Lippman-
Schwinger form [58]

Xij(W, ~q
′, ~q ) = Zij(W, ~q

′, ~q )

+

3∑

k=1

∫
d3q ′′

(2π)3ǫk(q ′′)
Zik(W, ~q

′, ~q ′′)

× τk(Wk(W, ~q
′′ ))Xkj(W, ~q

′′, ~q ) .(C9)

The amplitudes Xij(W ) define the transitions between
the channel states (C2), i.e. collisions of the type “j +
(ik) → i+(jk)”, where (ik) and (jk) refer to interacting
two-particle states. The driving terms Zij(W ) are repre-
sented by the matrix elements of the free ηNN Green’s
function

Zij(W, ~q
′, ~q ) = (1− δij)〈i, ~q ′|GηNN (W )|j, ~q 〉 . (C10)

Explicitly, one finds for i 6= j

Zij(W, ~q
′, ~q ) =

f∗
i (~pi(~q

′, ~q )) fj(~pj(~q
′, ~q ))

W − Ei(~q ′)− Ej(~q )− Ek(~q ′ + ~q ) + i ǫ
,

(C11)
where the momenta ~pi(~q

′, ~q ) and ~pj(~q
′, ~q ) are given in

terms of ~q ′ and ~q. For simplicity, we use the nonrelativis-
tic relations

~pi(~q
′, ~q ) = ~q +

µi

Mk

~q ′ and ~pj(~q
′, ~q ) = ~q ′ +

µj

Mk

~q ,

(C12)
where the reduced mass in ith channel reads

µi =
MjMk

Mj +Mk

. (C13)

The next step to be taken towards an explicit evalua-
tion of the three-body equations is the antisymmetriza-
tion of the basic amplitudes with respect to the exchange
of the nucleons N1 and N2 for which we follow mainly the
work of [59]. It affects only the channels i = 1 and i = 2
because the channel i = 3 is already antisymmetric by
construction as pointed out above. Consider the system
of equations, which couple the amplitudes Xij for the
possible transitions from the channel j = 3. In the oper-
ator form we have explicitly

X13 = Z13 + Z12 τ2X23 + Z13 τ3X33 ,

X23 = Z23 + Z21 τ1X13 + Z23 τ3X33 , (C14)

X33 = Z31 τ1X13 + Z32 τ2X23 .

Taking into account the identity of the nucleons, it is
easy to find the following relations [59]

τ1 = τ2 , Z13 = −Z23 , Z31 = −Z32 , and Z12 = Z21 .

(C15)

With the help of this symmetry one can reduce (C14) to
a system of only two coupled equations

(X13 −X23) = 2Z13 − Z12 τ2 (X13 −X23)

+2Z13 τ3X33 , (C16)

X33 = Z31 τ1 (X13 −X23) . (C17)

Before defining the explicitly antisymmetrized ampli-
tudes, it is convenient to introduce a new channel nota-
tion. From now on we denote the channel with a spec-
tator nucleon as “N∗” and the one with a spectator me-
son as “d”. The corresponding channel wave functions
|N∗, ~q 〉 and |d, ~q 〉 are assumed to be antisymmetrized
with respect to the nucleons, in detail

|N∗, ~q 〉 = 1√
2
(|1, ~q 〉 − |2, ~q 〉) and |d, ~q 〉 = |3, ~q 〉 .

(C18)

Defining the driving terms in a symbolic notation by

ZN∗N∗ = −1

2
(Z12 + Z21) = −Z12 ,

ZdN∗ = Z31 , and

ZN∗d = Z13 , (C19)

and the properly antisymmetrized amplitudes by

Xd = X33 , XN∗d =
1

2
(X13 −X23) , (C20)

one arrives at the following set of equations:

XN∗d = ZN∗d + ZN∗d τdXd

+ZN∗N∗ τN∗ XN∗d , (C21)

Xd = 2ZdN∗ τN∗ XN∗d , (C22)

where the amplitudes Xd and XN∗d describe the two dif-
ferent transitions ηd→ ηd and ηd→ N∗N , respectively,
which are realized in ηd scattering.
Now, we will consider in addition the coupling to the

πNN channel via the two-body reaction ηN → πN ,
whereas we will neglect the coupling to the two-pion
channel ππNN . Its inclusion into the three-body for-
malism would require the use of phenomenological ap-
proaches, which in any case seem to be very ambiguous.
Due to the smallness of the N∗ → ππN decay proba-
bility we believe that this neglect will not significantly
influence our results. A treatment of the resulting cou-
pled channel problem within the Faddeev approach was
developed, e.g., in [60, 61]. Accordingly, we extend the
channel |N∗〉 to the following two-component form:

|N∗〉 =
(

|N∗(η)〉
|N∗(π)〉

)
. (C23)

The corresponding coupled channel t-matrix is given by

tN∗ = |N∗〉 τN∗ 〈N∗| , (C24)
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with the N∗-propagator

τN∗(WN∗) =
[ 1

γN∗

− 1

(2π)3

∑

α∈{π,η}

∫
MN

2Eα(~p )EN (~p )

× |f (α)
N∗ (~p )|2

WN∗ − EN (~p )− Eα(~p ) + iǫ
d3p

]−1

,

(C25)

where f
(α)
N∗ (~p ) = 〈~p |N∗(α)〉. Turning now to the three-

body problem, we obtain a set of three coupled equations,
namely

XN∗d = Z
(η)
N∗d + Z

(η)
N∗d τ

(η)
d X

(η)
d + Z

(π)
N∗d τ

(π)
d X

(π)
d

+(Z
(η)
N∗N∗ + Z

(π)
N∗N∗) τN∗ XN∗d , (C26)

X
(η)
d = 2Z

(η)
dN∗ τN∗ XN∗d , (C27)

X
(π)
d = 2Z

(π)
dN∗ τN∗ XN∗d , (C28)

where the driving terms are given in analogy to (C19) for
α ∈ {π, η} by

Z
(α)
N∗N∗ = −1

2
(Z

(α)
12 + Z

(α)
21 ) ,

Z
(α)
dN∗ = Z

(α)
31 and

Z
(α)
N∗d = Z

(α)
13 , (C29)

with analogous definitions for Z
(α)
ij as in (C10), i.e.,

Z
(α)
ij (W, ~q ′, ~q ) = (1− δij)〈i, ~q ′|GαNN (W )|j, ~q 〉 . (C30)

The set of equations (C26) through (C28) is the formal
basis of the present calculation. Its solution gives the re-
quired symmetrized rearrangement amplitudes and thus
amounts to solving the ηNN -problem.
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