Targeting triple-negative breast cancer: optimizing therapeutic outcomes – UPDATE

Main Article Content

Wendie D den Brok Karen A Gelmon

Abstract

Background: Triple-negative breast cancer (TNBC) is an aggressive, heterogeneous clinical breast cancer subtype that currently lacks approved targeted therapies.   Research aimed at understanding the mutational and transcriptional landscape of TNBC is being achieved through gene expression analysis and large-scale genomic projects, resulting in identification of potential drug targets.    

Design: A review of PubMed and conference databases was carried out to identify randomized clinical trials in TNBC as well as early phase trials of emerging targeted therapies.

Results and Discussion: The role of platinums and poly(ADP-ribose) polymerase inhibitors continues to be a focus of clinical trials with attention now on developing a predictive biomarker that identifies “BRCA-like” tumours.  The previously identified six TNBC subtypes has been revised to four and has provided further insight into the role of the androgen receptor and immune system, both of which are emerging as promising targets in select patients either as monotherapy or in combination with other immune therapies, chemotherapy or targeted therapy. Other novel targets include MET inhibition and signaling pathways such as the MAPK, PI3K and JAK/STAT pathways.  Antibody-drug conjugates are also of interest.  Targeting the angiogenesis and epidermal growth factor receptor pathways have had limited efficacy in the treatment of TNBC. 

Conclusions: As researchers begin to understand the underlying biology of TNBC and identify predictive biomarkers, more select patient populations are being treated with targeted therapies, which is a promising step forward in filling the current void of approved targeted treatment options for patients with TNBC.

Key Words: androgen receptor, breast cancer, breast cancer molecular subtypes, cancer treatment, immune checkpoint blockade, targeted therapy, triple-negative breast cancer.

Article Details

How to Cite
DEN BROK, Wendie D; GELMON, Karen A. Targeting triple-negative breast cancer: optimizing therapeutic outcomes – UPDATE. Medical Research Archives, [S.l.], v. 4, n. 6, oct. 2016. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/707>. Date accessed: 24 apr. 2024.
Keywords
androgen receptor, breast cancer, breast cancer molecular subtypes, cancer treatment, immune checkpoint blockade, targeted therapy, triple-negative breast cancer.
Section
Review Articles

References

1. Gonzalez-Angulo AM, Timms KM, Liu S, et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res. 2011;17(5):1082-1089. doi:10.1158/1078-0432.CCR-10-2560.

2. Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40(13):5795-5818. doi:10.1093/nar/gks270.

3. Akashi-Tanaka S, Watanabe C, Takamaru T et al. BRCAness predicts resistance to taxane-containing regimens in triple negative breast cancer during neoadjuvant chemotherapy. Clin Breast Cancer. 2015;15(1):80-85.

4. Lehmann BDB, Bauer J a J, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750-2767. doi:10.1172/JCI45014DS1.

5. Lehmann BD, Jovanović B, Chen X, et al. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS One. 2016;11(6):e0157368. doi:10.1371/journal.pone.0157368.

6. Von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol. 2014;15(7):747-756. doi:10.1016/S1470-2045(14)70160-3.

7. Kaklamani VG, Jeruss JS, Hughes E, et al. Phase II neoadjuvant clinical trial of carboplatin and eribulin in women with triple negative early-stage breast cancer (NCT01372579). Breast Cancer Res Treat. 2015;151(3):629-638. doi:10.1007/s10549-015-3435-y.

8. von Minckwitz G, Oibl S, Schneesweiss A, et al. Early survival analysis of the randomized phase II trial investigating the addition of carboplatin to neoadjuvant therapy for triple-negative and HER2-positive early breast cancer (GeparSixto). Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8-12; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr S2-04.

9. Sikov WM, Berry DA, Perou CM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (A. J Clin Oncol. 2015;33(1):13-21. doi:10.1200/JCO.2014.57.0572.

10. Telli ML, McMillan A, Ford JM et al. [P3-07-12] Homologous recombination deficiency (HRD) as a predictive biomarker of response to neoadjuvant platinum-based therapy in patients with triple negative breast cancer (TNBC): A pooled analysis. Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8-12; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr P3-07-12.

11. Connolly R, Elkin E, Timms K et al. Homologous recombination deficiency (HRD) as a predictive biomarker of response to preoperative systemic therapy (PST) in TBCRC008 comprising a platinum in HER2-negative primary operable breast cancer. Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8-12; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr P3-07-13.

12. Tutt A, Ellis P, Kilburn L et al. Abstract S3-01: The TNT trial: A randomized phase III trial of carboplatin (C) compared with docetaxel (D) for patients with metastatic or recurrent locally advanced triple negative or BRCA1/2 breast cancer (CRUK/07/012). Cancer Res. 2015;75:S3-01. doi:10.1158/1538-7445.SABCS14-S3-01.

13. O'Shhaughnessy J, Schwartzberg L, Danso M, et al. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2014;32(34):3840-3847.

14. Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235-244. doi:10.1016/S0140-6736(10)60892-6.

15. Gelmon K a., Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12(9):852-861. doi:10.1016/S1470-2045(11)70214-5.

16. Robson M, Tutt A, Balmana J et al. OlympiA, Neo-Olympia and OlympiAD: Randomized phase III trials of olaparib in patients (pts) with breast cancer (BC) and a germline BRCA1/2 mutation (gBRCAm). Proceedings of the Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2014 Dec 9-13; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2015;75(9 Suppl):Abstract nr OT1-1-04.

17. Rugo HS, Olopade OI, DeMichele A, et al. Adaptive Randomization of Veliparib–Carboplatin Treatment in Breast Cancer. N Engl J Med. 2016;375(1):23-34. doi:10.1056/NEJMoa1513749.

18. van t' Veer L, Esserman L, Sanil A, et al. DNA repair deficiency biomarkers identify HR + / HER2- breast cancer patients who may benefit from veliparib / carboplatin : results from the I-SPY 2 TRIAL. J Clin Oncol. 2015;33:(suppl; abstr 521).

19. Miller K, Tong Y, Jones DR et al. Cisplatin with or without rucaparib after preoperative chemotherapy in patients with triple negative breast cancer: Final efficacy results if Hoosier Oncology Group BRE09-146. J Clin Oncol. 2015;33(suppl; abstr 1082).

20. Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015; 348(6230):124-128. doi:10.1126/science.aaa1348.

21. Snyder A, Makarov V, Merghoub T et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 371(23):2189-2199. doi:10.1056/NEJMoa1406498.

22. Ibrahim EM, Al-Foheidi ME, Al-Mansour MM, Kazkaz GA. The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat. 2014;148(3):467-476. doi:10.1007/s10549-014-3185-2.

23. Nanda R, Chow LQM, Dees EC, et al. Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol. 2016;34(21):1-10. doi:10.1200/JCO.2015.64.8931.

24. Emens LA, Braiteh FS, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC). Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2859. doi:10.1158/1538-7445.AM2015-2859

25. Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity. 2013;39(1):1-10. doi:10.1016/j.immuni.2013.07.012.

26. Hodge JW, Garnett CT, Farsaci B, et al. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer. 2013;133(3):624-636. doi:10.1002/ijc.28070.

27. Adams S, Diamond J, Hamilton EP et al. Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;34:(suppl; abstr 1009).

28. Vera-Badillo FE, Templeton AJ, De Gouveia P, et al. Androgen receptor expression and outcomes in early breast cancer: A systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(1):1-11. doi:10.1093/jnci/djt319.

29. Hickey TE, Robinson JLL, Carroll JS, Tilley WD. Minireview: The androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol. 2012;26(8):1252-1267. doi:10.1210/me.2012-1107.

30. Rampurwala M, Wisinski KB, O’Regan R. Role of the androgen receptor in triple-negative breast cancer. Clin Adv Hematol Oncol. 2016;14(3):186-193.

31. Jézéquel P, Loussouarn D, Guérin-Charbonnel C, et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015;17(2015):43. doi:10.1186/s13058-015-0550-y.

32. Barton VN, D’Amato NC, Gordon MA, et al. Multiple Molecular Subtypes of Triple-Negative Breast Cancer Critically Rely on Androgen Receptor and Respond to Enzalutamide In Vivo. Mol Cancer Ther. 2015;14(3):[Epub ahead of print]. doi:10.1158/1535-7163.MCT-14-0926.

33. Gilmore H, Varadan V, Williams N et al. Androgen receptor expression in triple negative breast cancer. Proceedings of the Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2014 Dec 9-13; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2015;75(9 Suppl):Abstract nr P3-04-07.

34. Gucalp A, Tolaney S, Isakoff SJ, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 2013;19(19):5505-5512. doi:10.1158/1078-0432.CCR-12-3327.

35. Traina TA, Miller K, Yardley DA et al. Results from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC). J Clin Oncol. 33(suppl; abstr 1003).

36. Miller K, Krop I, Schwartzberg L et al. Improved clinical outcomes on enzalutamide observed in patients with PREDICT AR+ triple-negative breast cancer: prognosis or prediction? Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8-12; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr P3-07-25.

37. Bonnefoi H, Grellety T, Tredan O, et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol. 2016;27(5):812-818. doi:10.1093/annonc/mdw067.

38. Xu H, Eirew P, Mullaly SC, Aparicio S. The omics of triple-negative breast cancers. Clin Chem. 2014;60(1):122-133. doi:10.1373/clinchem.2013.207167.

39. Lehmann BD, Bauer JA, Schafer JM, et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16(4):406. doi:10.1186/s13058-014-0406-x.

40. Asghar U, Herrera-Abreu T, Cutts R et al. Identification of subtypes of triple negative breast cancer (TNBC) that are sensitive to CDK4/6 inhibition. J Clin Oncol. 2015;33(suppl; abstr 11098).

41. Miller K, Wang M, Gralow J et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666-2676.

42. Miles DW, Chan A, Dirix LY et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010;28:3239-3247.

43. Robert NJ, Dieras V, Glaspy J et al. RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29:1252-1260.

44. Cameron D, Brown J, Dent R, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): Primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14(10):933-942. doi:10.1016/S1470-2045(13)70335-8.

45. Mackey JR, Ramos-Vazquez M, Lipatov O, et al. Primary results of ROSE/TRIO-12, a randomized placebo-controlled phase III trial evaluating the addition of ramucirumab to first-line docetaxel chemotherapy in metastatic breast cancer. J Clin Oncol. 2015;33(2):141-148. doi:10.1200/JCO.2014.57.1513.

46. Choi J, Jung WH, Koo JS et al. Clinicopathologic features of molecular subtypes of triple negative breast cancer based on immunohistochemical markers. Histol Histopathol. 2012;27:1481-1493.

47. Gumuskaya B, Alper M, Hucumenoglu S et al. EGFR expression and gene copy number in triple-negative breast carcinoma. Cancer Genet Cytogenet. 2010;203:222-229.

48. Grob TJ, Heilenkotter U, Geist S, et al. Rare oncogenic mutations of predictive markers for targeted therapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;134:561-567.

49. Jacot W, Lopez-Crapez E, Thezenas S, et al. Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles. Breast Cancer Res. 2011;13:R133.

50. von Minckwitz G, Jonat W, Fasching P, et al. A multicentre phase II study gefitinib in taxane- and anthracycline-pretreated metastatic breast cancer. Breast Cancer Res Treat. 89(2):165-172.

51. Baselga J, Albanell J, Ruiz A, et al. Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol. 2005;23(23):5323-5333. doi:10.1200/JCO.2005.08.326.

52. Dickler MN, Cobleigh MA, Miller KD, Klein PM, Winer EP. Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer Res Treat. 2009;115(1):115-121. doi:10.1007/s10549-008-0055-953.

53. Schuler M, Awada A, Harter P, et al. A phase II trial to assess efficacy and safety of afatinib in extensively pretreated patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat. 2012;134(3):1149-1159. doi:10.1007/s10549-012-2126-1.

54. Suder A, Ang JE, Kyle F, et al. A phase I study of daily afatinib, an irreversible ErbB family blocker, in combination with weekly paclitaxel in patients with advanced solid tumours. Eur J Cancer. 51(16):2275-2284. doi:10.1016/j.ejca.2015.07.041.

55. Carey LA, Rugo HS, Marcom PK, et al. TBCRC 001: Randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol. 2012;30(21):2615-2623. doi:10.1200/JCO.2010.34.5579.

56. Tredan O, Campone M, Jassem J, et al. Ixabepilone alone or with cetuximab as first-line treatment for advanced/metastatic triple-negative breast cancer. Clin Breast Cancer. 2015;15(1):8-15. doi:10.1016/j.clbc.2014.07.007.

57. Yardley DA, Ward PJ, Daniel BR, et al. Panitumumab, Gemcitabine, and Carboplatin as Treatment for Women With Metastatic Triple-Negative Breast Cancer: A Sarah Cannon Research Institute Phase II Trial. Clin Breast Cancer. 2016:1-7. doi:10.1016/j.clbc.2016.05.006.

58. Baselga J, Gomez P, Greil R, et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2013;31(20):2586-2592. doi:10.1200/JCO.2012.46.2408.

59. Nabholtz JM, Chalabi N, Radosevic-Robin N et al. Multicentric neoadjuvant pilot Phase II study of cetuximab combined with docetaxel in operable triple negative breast cancer. Int J Cancer. 138(9):2274-2280.

60. Graveel CR, DeGroot JD, Su Y et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci U S A. 2009;106(31):12903-12908. doi:10.1073/pnas.0810402106.

61. Tolaney SAM, Ziehr DR, Gou H et al. A phase II study of cabozantinib for metastatic triple-negative breast cancer (TNBC). J Clin Oncol. 2015;33(suppl; abstr 1080).

62. Duda DG, Ziehr DR, Guo H et al. Effect of cabozantinib treatment on circulating immune cell populations in patients with metastatic triple-negative breast cancer (TNBC). J clin Oncol. 2016;34:(suppl; abstr 1093).

63. Yi YW, You K, Bae EJ, Kwak S-J, Seong Y-S, Bae I. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6. Int J Oncol. 2015:1-11. doi:10.3892/ijo.2015.2982.

64. Kim YJ, Choi JS, Seo J, et al. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. Int J Cancer. 2014;134(10):2424-2436. doi:10.1002/ijc.28566.

65. Balko JM, Cook RS, Vaught DB et al. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med. 2012;18(7):1052-1059.

66. Hoeflich KP, O’brien C, Boyd Z et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res. 2009;15(14):4649-4664.

67. Jing J, Greshock J, Holbrook JD et al. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol Cancer Ther. 2012;11(3):720-729.

68. Menendez J, Vellon L, Mehmi I, Teng PK, Griggs DW, Lupu R. A novel CYR61-triggered 'CYR61-alphavbeta3 integrin loop' regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway. Oncogene. 2005;24(5):761-779. doi:10.1038/sj.onc.1208238.

69. Brufsky A, Kim S, Thierry J et al. Cobimetinib (C) + paclitaxel (P) as first-line treatment in patients (pts) with advanced triple-negative breast cancer (TNBC): Updated results and biomarker data from the phase 2 COLET study. J Clin Oncol. 2016;34:(suppl; abstr 1074).

70. Maiello MR, Amelia D, Bevilacqua S, Gallo M, Normanno N, De Luca A. EGFR and MEK Blockade in Triple Negative Breast Cancer Cells. J Cell Biochem. 2015;2785(April):1-25. doi:10.1002/jcb.25220.

71. Balko JM, Schwarz LJ, Luo N, et al. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Sci Transl Med. 2016;8(334):334ra53. doi:10.1126/scitranslmed.aad3001.

72. Barrett MT, Anderson KS, Lenkiewicz E, et al. Genomic amplification of 9p24.1 targeting JAK2, PD-L1, and PD-L2 is enriched in high-risk triple negative breast cancer. Oncotarget. 2015;6(28):1-11.

73. Tripathy D, Chien AJ, Hylton N et al. Adaptively randomized trial of neoadjuvant chemotherapy with or without the Akt inhibitor MK-2206: Graduation results fromt the I-SPY 2 Trial. J Clin Oncol. 2015;33(suppl; abstr 524).

74. Bardia A, Vahdat LT, Diamond JR et al. Therapy of refractory/relapsed metastatic triple-negative breast cancer (TNBC) with an anti-Trop-2-SN-38 antibody-drug conjugate (ADC), sacituzumab govitecan (IMMU-132): Phase I/II clinical experience. J Clin Oncol. 2015;33:(suppl; abstr 1016).

75. Yardley DA, Weaver R, Melisko ME, et al. EMERGE: A randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB - Expressing breast cancer. J Clin Oncol. 2015;33(14):1609-1619. doi:10.1200/JCO.2014.56.2959.