Digital information storage on DNA in living organisms

Main Article Content

Jian Sun Qiming Wang Wenyi Diao Chi Zhou Bingbing Wang Liqun Rao Ping Yang

Abstract

The growing demand of digital information storage worldwide has led to the development of technology of using DNA as novel storage media. DNA is a suitable storage method due to its high data density, environment compatibility and long-term storage potential. Currently, most studies on DNA storage are based on short oligonucleotide pool synthesized on silica chip. However, despite the low cost and high-throughput advantages, this type of DNA storage also has shortcomings such as limited DNA quantity, difficulty replicating, etc. Thus, a new type of storing digital information within the DNA of living organism is attracting more attentions. In this research we conducted pilot studies of DNA storage in representative living organisms such as E. coli, yeast and Arabidopsis. This study aimed to address fundamental questions of DNA storage in living organisms, such as feasibility, stability and so on. From this study, we found that digital information can be stored and stably transmitted on DNA within these living organisms.

Article Details

How to Cite
SUN, Jian et al. Digital information storage on DNA in living organisms. Medical Research Archives, [S.l.], v. 7, n. 6, june 2019. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1930>. Date accessed: 18 apr. 2024. doi: https://doi.org/10.18103/mra.v7i6.1930.
Section
Articles

References

[1] P.Y. De Silva, G.U. Ganegoda, New Trends of Digital Data Storage in DNA, Biomed Res Int 2016 (2016) 8072463.
[2] D. Panda, K.A. Molla, M.J. Baig, A. Swain, D. Behera, M. Dash, DNA as a digital information storage device: hope or hype?, 3 Biotech 8(5) (2018) 239.
[3] C. Bancroft, T. Bowler, B. Bloom, C.T. Clelland, Long-term storage of information in DNA, Science 293(5536) (2001) 1763-5.
[4] M. Castillo, From hard drives to flash drives to DNA drives, AJNR Am J Neuroradiol 35(1) (2014) 1-2.
[5] B. Zakeri, T.K. Lu, DNA nanotechnology: new adventures for an old warhorse, Curr Opin Chem Biol 28 (2015) 9-14.
[6] F. Akram, I.U. Haq, H. Ali, A.T. Laghari, Trends to store digital data in DNA: an overview, Mol Biol Rep 45(5) (2018) 1479-1490.
[7] J.P. Cox, Long-term data storage in DNA, Trends Biotechnol 19(7) (2001) 247-50.
[8] M.R. Gillings, M. Hilbert, D.J. Kemp, Information in the Biosphere: Biological and Digital Worlds, Trends Ecol Evol 31(3) (2016) 180-189.
[9] G.M. Church, Y. Gao, S. Kosuri, Next-generation digital information storage in DNA, Science 337(6102) (2012) 1628.
[10] Y. Erlich, D. Zielinski, DNA Fountain enables a robust and efficient storage architecture, Science 355(6328) (2017) 950-954.
[11] S. Kosuri, G.M. Church, Large-scale de novo DNA synthesis: technologies and applications, Nat Methods 11(5) (2014) 499-507.
[12] S.M. Yazdi, Y. Yuan, J. Ma, H. Zhao, O. Milenkovic, A Rewritable, Random-Access DNA-Based Storage System, Sci Rep 5 (2015) 14138.
[13] R.D. Andersen, G. Bristol, Simplified reading and storage of DNA sequence data, Am Biotechnol Lab 9(4) (1991) 26.
[14] C. Mayer, G.R. McInroy, P. Murat, P. Van Delft, S. Balasubramanian, An Epigenetics-Inspired DNA-Based Data Storage System, Angew Chem Int Ed Engl 55(37) (2016) 11144-8.
[15] G.C. Smith, C.C. Fiddes, J.P. Hawkins, J.P. Cox, Some possible codes for encrypting data in DNA, Biotechnol Lett 25(14) (2003) 1125-30.
[16] C.M. Gearheart, B. Arazi, E.C. Rouchka, DNA-based random number generation in security circuitry, Biosystems 100(3) (2010) 208-14.
[17] B. Hwang, D. Bang, Toward a new paradigm of DNA writing using a massively parallel sequencing platform and degenerate oligonucleotide, Sci Rep 6 (2016) 37176.
[18] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E.M. LeProust, B. Sipos, E. Birney, Towards practical, high-capacity, low-maintenance information storage in synthesized DNA, Nature 494(7435) (2013) 77-80.
[19] A.K. Yim, A.C. Yu, J.W. Li, A.I. Wong, J.F. Loo, K.M. Chan, S.K. Kong, K.Y. Yip, T.F. Chan, The Essential Component in DNA-Based Information Storage System: Robust Error-Tolerating Module, Front Bioeng Biotechnol 2 (2014) 49.
[20] R.N. Grass, R. Heckel, M. Puddu, D. Paunescu, W.J. Stark, Robust chemical preservation of digital information on DNA in silica with error-correcting codes, Angew Chem Int Ed Engl 54(8) (2015) 2552-5.
[21] Q. Xu, M.R. Schlabach, G.J. Hannon, S.J. Elledge, Design of 240,000 orthogonal 25mer DNA barcode probes, Proc Natl Acad Sci U S A 106(7) (2009) 2289-94.
[22] L. Organick, S.D. Ang, Y.J. Chen, R. Lopez, S. Yekhanin, K. Makarychev, M.Z. Racz, G. Kamath, P. Gopalan, B. Nguyen, C.N. Takahashi, S. Newman, H.Y. Parker, C. Rashtchian, K. Stewart, G. Gupta, R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, K. Strauss, Random access in large-scale DNA data storage, Nat Biotechnol 36(3) (2018) 242-248.
[23] N. Yachie, Y. Ohashi, M. Tomita, Stabilizing synthetic data in the DNA of living organisms, Syst Synth Biol 2(1-2) (2008) 19-25.
[24] J. Bonnet, P. Subsoontorn, D. Endy, Rewritable digital data storage in live cells via engineered control of recombination directionality, Proc Natl Acad Sci U S A 109(23) (2012) 8884-9.
[25] J. Bornholt, R. Lopez, D.M. Carmean, L. Ceze, G. Seelig, K. Strauss, A DNA-Based Archival Storage System %J SIGPLAN Not, 51(4) (2016) 637-649.
[26] S.A. Tsaftaris, A.K. Katsaggelos, Retrieval efficiency of DNA-based databases of digital signals, IEEE Trans Nanobioscience 8(3) (2009) 259-70.
[27] F.G. TAVELLA, A. DOOLEY-CULLINANE, T. M. CONTI, M. COFFEY, L. BALASUBRAMANIAM, S., DNA Molecular Storage System: Transferring Digitally Encoded Information through Bacterial Nanonetworks, Cornell University Library Submitted (2018).
[28] Y. Zhong, S. Qi, F. Sheng, J. Tian, P. Zhu, P. Yang, X. Cai, A new digital information storing and reading system based on synthetic DNA, Sci China Life Sci 61(6) (2018) 733-735.
[29] G. Li, B.X. Dong, Y.H. Liu, C.J. Li, L.P. Zhang, Gene synthesis method based on overlap extension PCR and DNAWorks program, Methods Mol Biol 1073 (2013) 9-17.
[30] J. Schell, M. Van Montagu, The Ti-plasmid of Agrobacterium tumefaciens, a natural vector for the introduction of nif genes in plants?, Basic Life Sci 9 (1977) 159-79.
[31] F. Tavella, A. Marcinkevicius, F. Krausz, 90 mJ parametric chirped pulse amplification of 10 fs pulses, Opt Express 14(26) (2006) 12822-7.