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Abstract: 

Fibroblasts are a cell type that dominates connective 

tissues in a broad array of organs and plays key roles 

in formation of the extracellular matrix and wound 

healing. The cochlea of the mammalian inner ear 

harbors loose connective tissues such as the spiral 

ligament and spiral limbus, and their cellular 

components are called ―fibrocytes.‖ The fibrocytes in 

the ligament are functionally differentiated and 

specialized for ion transport that is essential for 

proper actions of the cochlea. Molecular biological 

and histological assays have shown that these cells 

express specific types of ion channels and 

transporters. Results of in vivo electrophysiological 

experiments have integrated activities of individual 

channels and transporters into the ionic flow that 

circulates throughout the organ and maintains the 

electrochemical properties in various tissues and 

extracellular fluids. Moreover, analyses of deafness 

genes in humans as well as transgenic experiments on 

mice recently revealed the relevance of fibrocyte 

dysfunction to hearing disorders. In this review 

article, we not only describe molecular architecture 

and physiological and pathological significance of 

cochlear fibrocytes but also provide insights into 

next-generation therapies targeting these cells. 

mailto:hibinoh@med.niigata-u.ac.jp
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1 Introduction 

 
Fibroblasts are mesenchymal cells that are 

distributed ubiquitously throughout connective 

tissues in most organs. These cells show branched-

shape morphology and have moderately basophilic 

cytoplasm and an abundant rough endoplasmic 

reticulum.1,2 Furthermore, they synthesize and 

secrete extracellular-matrix precursors including 

collagens, contributing to wound healing and 

inflammatory processes.1-3
 

There is a population of quiescent or 

resting fibroblasts that are less involved in collagen 

synthesis.1,4 These so-called ―fibrocytes‖ are 

scattered within connective tissues (e.g., tenocytes  

in a tendon tissue) and harbor a reduced volume of 

the cytoplasm and of the rough endoplasmic 

reticulum and more regular and smoother surface as 

compared to ―active fibroblasts.‖ Once activated by 

a tissue injury or an infection, fibrocytes can  

convert into fibroblasts and then migrate toward the 

problem focus followed by their own proliferation 

and collagen synthesis to assist tissue remodeling. 

Currently, the term ―fibrocytes‖ is 

preferably used to denote specific cell types, i.e., 

bone marrow-derived fibroblast progenitor cells in 

circulating blood, rather than to label the 

aforementioned quiescent or resting fibroblasts. 

These cells account for 0.1–0.5% of nucleated cells 

in peripheral blood of normal hosts and express two 

hematopoietic markers, CD34 and CD45, as well as 

an extracellular-matrix protein, collagen I.5-7 In 

response to tissue injury, CD34+ fibrocytes migrate 

out of the circulation and secrete extracellular-

matrix proteins or chemokines. These cells are also 

involved in fibrotic diseases and tumorigenesis; 

therefore, they are likely to be candidates for 

biomarkers and therapeutic targets of diseases.8-10
 

On the other hand, in the inner ear, a 

―fibrocyte‖ represents a different cell type. In 1970, 

Kimura  and  colleagues  used  this  terminology   to 

describe the cells in the spiral ligament and spiral 

limbus, which are loose connective tissues in the 

cochlea.11-13 Like fibroblasts, cochlear fibrocytes 

have a mesenchymal origin; nevertheless, they are 

mature cells that are functionally differentiated and 

distinct from the hematopoietic fibroblast  

progenitor cells that express CD34 and circulate 

systemically.5 

Evidence has accumulated that cochlear 

fibrocytes have unique physiological profiles  and 

are crucial for normal hearing. In this article, we 

briefly review the functional roles and pathological 

relevance of these fibrocytes. 

 

 

 
2 An overview of the cochlea 

 
In mammals, the cochlear bony capsule harbors a 

cochlear duct that contains several epithelial cell 

types including sensory hair cells (Figure 1).14 The 

outside and inside of the duct are filled with two 

extracellular fluids, perilymph and endolymph, 

respectively. Whereas perilymph is similar to an 

ordinary extracellular fluid, endolymph contains a 

high K+ concentration ([K+]) of 150 mM and a 

highly positive potential of approximately +80 mV, 

called the endocochlear potential (EP). Each hair 

cell bathes its basolateral surface in perilymph and 

exposes the apical hair bundle to endolymph. When 

sound waves vibrate the basilar membrane, which is 

an elastic membranelike structure beneath the hair 

cells, mechanoelectrical transduction (MET) 

channels on top of the hair bundle are opened. This 

process lets K+ from endolymph into the hair cells, 

inducing their depolarization (Figure 1). The 

cellular electrical excitation triggers 

neurotransmission that conveys the acoustic signals 

to auditory nerves. The highly positive EP increases 

the driving force behind the K+ influx across the 

MET channels; therefore, it essentially contributes 

to the sensitivity of hair cells. The K+ accumulated 

in the hair cells diffuses basolaterally to   perilymph 
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and eventually returns to endolymph. This 

unidirectional K+ transport throughout the cochlea, 

which is referred to as ―K+ recycling‖ or ―K+ 

circulation‖ (Figure 1), is likely to maintain the 

electrochemical balance within the cochlea.15-17
 

The EP and K+ recycling depend primarily 

upon functions of the stria vascularis, an epithelial-

like tissue that is localized to the lateral region of 

the cochlear duct and contains a dense capillary 

network.18,19 Between the stria vascularis and bony 

capsule, there is a loose connective tissue that is 

referred to as the ―spiral ligament.‖ 

 

 

 
3 Functional properties of cochlear fibrocytes 

 
Previously, the spiral ligament was believed to serve 

only as a supportive element for anchoring the 

cochlear duct to the bony capsule, according to the 

name ―ligament.‖ Recent studies have strongly 

indicated that fibrocytes, the cellular components of 

the spiral ligament, perform key functions in 

cochlear K+ recycling.20-22 Fibrocytes in the spiral 

limbus seem to have similar roles.23
 

During development, the cochlear duct 

containing endolymph arises from the embryonic 

otocyst of ectodermal origin, whereas cochlear 

fibrocytes are derived from the periotic  

mesenchyme surrounding the otocyst.24-28 Mature 

fibrocytes in the ligament are classified into five  

cell types (types I–V) in accordance with their 

location and profile of expression of proteins.21,29 

(Figure 1 and Table 1). 

A remarkable feature of the fibrocytes in 

the spiral ligament is an extensive gap junction 

network, which interconnects all five types of 

fibrocytes and a portion of the stria vascularis.20,30,31 

Indeed, when neurobiotin of 287 Da is injected into 

a fibrocyte in a cochlear slice preparation, numerous 

fibrocytes throughout the spiral ligament as well as 

the basal and intermediate cells in the stria 

vascularis    are    stained.32    Gap    junctions  form 

channels that can freely let through ions and small 

molecules (up to 1,000 Da) and thereby promote 

communication among cells. In the cochlear K+ 

recycling, the intercellular gap junctions among 

fibrocytes are likely to constitute the K+ transport 

pathway from perilymph to the stria vascularis.20-22 

(Figure 1). Aberrations of connexins, the proteins 

constituting the gap junction, cause hearing loss, as 

described below. 

Cochlear fibrocytes, which bathe in 

perilymph, are embedded in a dense and 

microporous collagen matrix.11,33,34 The cochlear K+ 

recycling theory has suggested that the fibrocytes in 

the spiral ligament continuously take up K+ from 

perilymph (Figure 1). Subsequently, K+ is 

transported to the stria vascularis through gap 

junctions and thereafter is secreted into endolymph 

by strial marginal cells. This idea arises mainly  

from histological findings that some  K+-

transporting proteins such as Na+/K+ ATPase and 

Na+/K+/2Cl cotransporter type 1 (NKCC1, also 

known as SLC12A2) are coexpressed in type II, IV, 

and V fibrocytes (Figure 2 and Table 1).35,36 

Furthermore, in the strial marginal cells whose 

apical membrane faces endolymph and secretes K+, 

Na+/K+ ATPase and NKCC1 occur together on the 

basolateral membrane and both of them strongly 

contribute to K+ uptake  (Figure  2).37  In  contrast, 

our in vivo intracellular recording experiments with 

cochleae of live guinea pigs have shown that the 

fibrocyte K+ uptake depends primarily on Na+/K+ 

ATPase but unlikely on NKCC1.38,39 Although 

fibrocytes in the ligament also express other K+ 

channels and transporters such as Kir5.1, BK 

channels, Kv3.1b, and KCC3,40-43 their functions 

remain uncertain. 

One electrical property of the fibrocytes in 

the ligament is unusual. In general, the plasma 

membrane of cells in a resting state is permeated 

predominantly by K+; therefore, their resting 

membrane potentials (RMPs) relative to the 

neighboring extracellular solution are negative (30 
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to 90 mV).44-46 On the other hand, these fibrocytes 

constantly show  a positive  membrane  potential  of 

+5 to +12 mV in vivo even without any acoustic 

stimuli  (Figure  2).37,47   This  electrical  component 

is required for the highly positive EP of 

approximately +80 mV (for details, see the 

literature48). The mechanisms underlying the unique 

RMP in the fibrocytes have remained elusive. 

Recently, using the aforementioned in vivo 

intracellular recording technique, we demonstrated 

that the fibrocyte membrane is permeable more to 

Na+ than to K+ and Cl, and this property  is 

intimately involved in the maintenance of the 

positive RMP (Figure 2).49 It is possible that the 

Na+ inflow mediated by this Na+ permeability is 

coupled with Na+ outflow of fibrocyte Na+/K+ 

ATPase and contributes to the continuous K+ uptake 

by this ATPase. Clearly, the fibrocyte Na+ 

permeability is essential for the EP; the molecular 

constituents should be identified in a future study. 

The fibrocytes in the spiral ligament seem 

to play other physiological roles. Type III fibrocytes 

express α-smooth muscle actin and nonmuscle 

myosin II and show contractility.50 The spiral 

ligament is directly connected with the basilar 

membrane, which vibrates in response to acoustic 

stimuli and is surmounted by hair cells (Figure 1). 

This tissue may not only structurally maintain the 

basilar membrane but also actively regulate its 

tension. 

While the stria vascularis contains a dense 

capillary network, the ligament is penetrated by 

arteriovenous anastomosing vessels. Intracellular 

[Ca2+] of type V fibrocytes correlates with the 

diameter of neighboring vessels.51 Such 

―fibrovascular coupling‖ may control cochlear  

blood flow in response to acoustic stimuli, which 

alter metabolic demand in the cochlea. 

 
4 Pathological significance of cochlear fibrocytes 

 
In an animal model, selective disruption of the 

fibrocytes in the spiral ligament causes  acute 

hearing loss.52,53 This observation not only 

reinforces crucial involvement of fibrocytes in 

cochlear function but also implies their pathological 

relevance. Several studies have indicated that 

disorders of fibrocytes contribute to some deafness 

types. 

 

4.1 Age-related and noise-induced hearing loss 

Aging and noise are common causes of 

sensorineural hearing loss. Schuknecht has studied a 

number of postmortem human temporal bones and 

described atrophy of the spiral ligament as one of 

the common features of age-related changes in his 

articles.54-56 Some animal models show a loss of 

fibrocytes in the ligament as they get older.57-59 

Furthermore, morphological changes of these 

fibrocytes are observed in noise-exposed animals, at 

much lower stimulus sound intensity than the 

intensity causing hair cell degeneration.60-62 These 

findings suggest that degeneration or dysfunction of 

cochlear fibrocytes participates in presbycusis or 

noise-induced hearing loss even in humans. 

 

4.2 Hereditary hearing loss 

Congenital deafness occurs in one per every 1,000 

births; more than a half of these disorders are 

attributable to genetic factors. Two-thirds of genetic 

deafness diseases are not accompanied by any other 

aberrations. Most cases (~75%) of this 

nonsyndromic deafness are inherited in an 

autosomal recessive manner.63,64 More than 140 loci 

have been found to cause human deafness 

(Hereditary Hearing Loss Homepage: 

http://hereditaryhearingloss.org)65; genes related to 

cochlear fibrocytes are summarized in Table 2. 

4.2.1 Gap junctions 

http://hereditaryhearingloss.org/


Medical Research Archives, Volume 5 Issue 6. June Issue. 

Functional and pathological significance of cochlear fibrocytes 

Copyright 2017 KEI Journals. All Rights Reserved. Page | 5 

 

 

 

The most common deafness gene is GJB2, 

which encodes a gap junction protein connexin 26.66 

Mutations of GJB2 are responsible for 30–50% of 

cases of congenital hereditary deafness and 50–80% 

of cases of autosomal recessive nonsyndromic 

deafness such as DFNB1.67-71 Genetic mutations of 

connexins 30, 31, and 43 are also linked with  

human deafness.72-75 These observations may 

highlight the crucial participation of fibrocytes  in 

K+ recycling. 

4.2.2 Fibrocytic differentiation 

POU3F4 (BRN-4) is located in human 

chromosome region Xq21.1 and encodes a 

transcription factor of the POU domain family.76 

This gene plays key roles in mesenchymal 

differentiation into fibrocytes during cochlear 

development,24 and its mutations cause X-linked 

deafness of type 2 (DFNX2).76 The latter accounts 

for ~50% of all families with X-linked 

nonsyndromic hearing loss77 and is clinically 

characterized by bilateral, progressive, and mixed 

conductive-sensorineural hearing loss. Moreover, 

this disease is accompanied by temporal-bone 

anomalies, stapedial fixation, and perilymphatic 

gusher during stapes surgery. In mice, Pou3f4 

inactivation causes profound hearing loss with 

degeneration of the spiral ligament and a reduction 

in the EP.24,78 Similarly, mice lacking T-box 

transcription factor Tbx18 show deafness with 

severely compromised differentiation of fibrocytes 

in the spiral ligament and a loss of the  EP26  

although the corresponding human deafness has not 

yet been identified. Therefore, proper differentiation 

and maturation of these fibrocytes is likely to be 

necessary for the maintenance of the EP and normal 

hearing. 

4.2.3 Extracellular-matrix proteins 

In the spiral ligament, impairments of the 

extracellular matrix, which is secreted by fibrocytes, 

are also involved in the pathogenesis of deafness. 

Cochlin, the most abundant noncollagen protein in 

the cochlea, is encoded by the COCH gene.79,80 

Mutations of this gene are associated with DFNA9, 

an autosomal dominant adult-onset progressive 

sensorineural hearing loss accompanied by a 

vestibular disorder with vertigo.81 In mice, a 

knockout of the Otos gene—which encodes 

otospiralin, another extracellular-matrix protein in 

the ligament—causes hearing loss accompanied by 

degeneration of the fibrocytes.82 It is  noteworthy 

that in these animals, the hair cells are preserved. 

Physiological functions of cochlin and otospiralin 

remain unclear. 

4.2.4 Membrane proteins 

Several membrane proteins expressed in 

the fibrocytes of the spiral ligament may also be 

related to genetic deafness. These proteins include 

SLC12A6 (KCC3), a potassium chloride 

cotransporter, as well as SLC4A10 and SLC4A11, 

both of which belong to the bicarbonate transporter 

family. In animals, genetic mutation of any of the 

three proteins results in hearing loss43,83-85; the 

mechanisms underlying cochlear dysfunction are 

poorly understood. 

 

 

5 The fibrocyte as a possible target of 

regenerative therapies 

 
Cochlear fibrocytes are well-differentiated cells of 

mesenchymal origin, as already mentioned, and 

thereby they are likely to have limited capacity for 

proliferation.62,86,87 In rats, reversal of  the  hearing 

loss induced by a selective injury of these fibrocytes 

is facilitated when mesenchymal stem cells, which 

are multipotent cells isolated from adult  bone 

marrow, are transplanted into the semicircular canal 

of the inner ear.88 The transplanted cells are detected 

in the injured area of the spiral ligament and express 

marker proteins of cochlear fibrocytes. Furthermore, 

hematopoietic   stem   cells,   even   when    injected 
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systemically, can reach the ligament and start to 

express fibrocyte marker proteins.89 If these stem 

cells were sufficiently differentiated and could fully 

compensate the dysfunctions of the fibrocytes, then 

regenerative therapies for deafness targeting these 

cells would be realistic. 
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Figure 1 Structure of the cochlea in the mammalian inner ear. 

 
Shown is a schematic diagram of a cross-section of the snail-shaped cochlea, whose overview and inside 

architecture are depicted in the upper left inset. The bold, black line points to the cochlear duct that contains the 

stria vascularis and several epithelial cell types such as hair cells. The positions of the spiral ligament and other 

tissues and cells are also described. Areas indicated by roman numbers in the ligament represent locations of the 

five fibrocyte types. K+ is recycled between endolymph (E) and perilymph (P) across the hair cells, ligament,  

and stria vascularis. Electrochemical properties of the two lymph types are denoted below the diagram. 
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Figure 2 Cellular components of the lateral region of the cochlear duct. 

 
The upper panel shows cells constituting the spiral ligament and stria vascularis as well as ion channels and 

transporters involved in K+ transport. The collagen matrix around the fibrocytes in the ligament is omitted. These 

cells, which bathe in perilymph (P), are interconnected with each other and with strial basal and intermediate 

cells (BCs and ICs, respectively). This connection results in formation of a syncytium (upper panel). The 

syncytium serves as an epithelial layer due to the tight junctions among BCs. In this arrangement, the fibrocytes 

and ICs constitute the basolateral (baso) and apical (api) surfaces, respectively. Strial marginal cells (MCs) form 

the other epithelial layer. The lower panel indicates the potential and [K+] in each extracellular and intracellular 

compartment. Fibrocytes show a positive potential of approximately +7 mV relative to perilymph (lower panel) 

because of high Na+ permeability [Na+ permeability value (PNa ) > K+ and Cl permeability values (PK, PCl); see 

the upper panel]. ClC: ClC-K-type Cl channels, IS: the intrastrial space, NKCC: Na+/K+/2Cl cotransporter, TJ: 

tight junction. vFC, vIM, vMB, and vMA correspond to the membrane potentials of fibrocytes, ICs, of the basolateral 

surface of MCs, and of the apical surface of MCs, respectively. The illustrations are adapted from our previous 

work49 with permission. 
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Table 1  Expression profiles of several proteins in the fibrocytes of the spiral ligament 
 

 

 

Fibrocyte Type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Data were obtained from Spicer and Schulte29, Gratton, Schulte and Hazen-Martin90 and Kelly, Forge and Jagger.50 

KCC, K＋/Cl cotransporter; NKCC, Na+/K+/2Cl cotransporter, SERCA, sarco/endoplasmic reticulum Ca2+ ATPase 

Proteins  
 I II III IV V 

Cytokeratin - - - - - 

Vimentin + - + + - 

Na+/K+ ATPase - + - + + 

Ca2+ ATPase (SERCA) + - - - - 

NKCC1 - + - + + 

KCC3 + - + - - 

Aquaporin 1 - - + - - 

Carbonic anhydrase II + - + + + 
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Table 2   Deafness genes related to cochlear fibrocytes 
 

 
 

Gene Human deafness Loci Protein Reference 

Gap junction proteins 

GJA1 (CX43) DFNA3A, DFNB1A 13q12.11 Connexin 43 74 

GJB2 (CX26) DFNA2B 1p34.3 Connexin 26 66,67 

GJB3 (CX31) DFNA3B, DFNB1B 13q12.11 Connexin 31 73 

GJB6 (CX30) AR nonsyndromic deafness 6q22.31 Connexin 30 72 

Transcription factors     

POU3F4 (BRN-4) DFNX2 Xq21.1  76 

Tbx18 *    26 

Extracellular matrix proteins 

COCH DFNA9 14q12 Cochlin (function unknown) 79 

Otos *   Otospiralin (function unknown) 82 

Membrane proteins     

  Slc12a6 (Kcc3) *   KCC3 (K+/Cl- cotransporter) 43 

 Slc4a10 *    (Bicarbonate transporter family) 85 

Slc4a11 *   (Bicarbonate transporter family) 83 

 

*Deafness has been reported only in animal models. 

DFNA, DFNB, and DFNX denote nonsyndromic deafness inherited in autosomal dominant, autosomal recessive, and 

X-linked patterns, respectively. 
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