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Abstract 

 

Homeostasis during pregnancy and in the in utero 

environment is essential for prenatal development. 

Prenatal maturation is hallmarked by an orchestrated and 

rigorous developmental program characterized by critical 

cascades in multiple organ systems.  During these critical 

periods of development, however, potential vulnerability 

to injury exists throughout pregnancy. Indeed, the 

developing central nervous system (CNS) is extremely 

vulnerable to environmental insults throughout the 

entirety of gestation.  These insults can adversely affect 

the developing brain and spinal cord, and permanently 

alter the neurodevelopmental trajectory. Specifically, in 

utero insults and dysregulation of the maternal-placental-

fetal axis can change molecular, cellular, structural, and 

functional development of the CNS, culminating in 

adverse outcomes and neurological disorders throughout 

postnatal life. In this review, we will discuss common 

infectious and toxin-induced in utero insults that have 

recently garnered attention, including Zika virus, prenatal 

opioid and alcohol exposure, and chorioamnionitis.  The 

goals are to identify common pathophysiological 

mechanisms, to emphasize the urgent need for new 

diagnostic tools, and to promote a broader understanding 

of the diverse array of neurological outcomes presenting 

in these children throughout their lifespan. With an 

increasing number of infants exposed to in utero 

infections and toxins, and the expanding public health 

awareness of the consequences of Zika infection, the 

opioid crisis, alcohol consumption during pregnancy, and 

the frequency of preterm birth in the United States, 

familiarity with the underlying mechanisms of each of 

these insults is paramount to improve the diagnosis and 

treatment for this exceedingly vulnerable patient 

population. 

 

Keywords: Neurodevelopment, Chorioamnionitis, 

Prenatal Alcohol Exposure, Zika Virus, Neonatal 

Abstinence Syndrome, Preterm birth, Central Nervous 

System, Opioid, Placenta, Pregnancy.  
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Introduction 
The development of the central nervous 

system (CNS) is a diverse and intricate 

process that begins early in gestation and 

continues into adulthood (Figure 1). 

 

 

 

 

 
 

 

Commencing with extensive genesis and 

proliferation of neural cells in the first 

trimester of pregnancy, and progressing 

through maturation, migration and 

synaptogenesis in the second trimester, 

diverse neural networks are formed (1-

3). Extending through the third trimester, 

the fetal brain develops gyri and 

undergoes extensive myelination and 

elaborate connectivity that continues to 

progress after birth. Indeed, dynamic 

models of neural development highlight 

the essential interplay of genetic, 

epigenetic and environmental factors in 

guiding, shaping and supporting the 

increasingly complex and elaborate 

architecture of the growing CNS (2-4).  

 

Considering the highly orchestrated 

processes of CNS development, the fetal 

brain and spinal cord are exquisitely 

sensitive to alterations in the 

microenvironment during pregnancy, and 

disruptions in homeostasis can have 

molecular, cellular, structural and 

functional implications that are apparent 

throughout life. This precise and 

protracted development conveys an 

inherent and specific risk for the disorders 

that reflect the timing and the exact 

developmental processes interrupted by 

detrimental pathophysiology. Specifically, 

infections (viral or bacterial) and 

exposures to toxins (environmental or 

synthetic) during pregnancy can affect 

several aspects of prenatal CNS 
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development with wide-ranging 

downstream consequences and lead to 

structural, functional, and multifaceted 

neurological deficits, and related co-

morbidities (1, 2). 

 

The placenta plays a key role in 

maintaining pregnancy, promoting and 

sustaining fetal growth, and protecting the 

fetus from foreign substances. It is also an 

important first line physical and 

immunological barrier against 

transmission of infectious and toxic agents 

during pregnancy (5). Recently, the 

placenta’s unique role as a platform and 

interface for fetal maturity essential to 

CNS development has been appreciated in 

epidemiological, clinical and preclinical 

studies (6, 7). Detailed studies of placental 

injury can provide a forum for 

understanding the mechanisms common 

to fetal systemic inflammation, 

neuroinflammation and CNS injury (7).  

Indeed, abnormalities in the placenta 

double the risk of neonatal 

encephalopathy (8-12). Minimizing CNS 

injury commencing in utero hinges on 

identification of critical pathways 

underlying the developmental program 

shared by both the placenta and CNS, 

such as inflammatory cell migration and 

recruitment, chemokine and growth factor 

signaling, and angiogenesis. 

 

While disruptions in placental function 

directly affect maturation of all organ 

systems (13, 14), the CNS is especially 

vulnerable, as its complexity and 

protracted development throughout 

gestation increases the propensity for 

injury at some point during pregnancy. 

Abnormal placental function and injury 

transmitted through the maternal-

placental-fetal axis (Figure 2)  
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is detrimental to the developing CNS. 

Through comprehensive study of this axis, 

we can begin to dissect the mechanisms 

common to neurodevelopmental 

disorders, and identify innovative 

diagnostic tools and biomarkers of injury 

and repair. Further, we can develop novel, 

targeted, and age-appropriate therapeutic 

strategies, with the goal of stratifying 

infants to the care and treatment they need 

when they are born. Here, we will review 

current literature and focus on four 

etiologically unique insults that 

commence in utero and affect the 

maternal-placental-fetal axis in distinct 

ways. Individually, these insults represent 

examples of infection (Zika virus or 

bacterial chorioamnionitis) and toxins 

(alcohol and opioids), but each are 

sentinel injuries that affect the developing 

CNS.  

 

Zika Virus 

In 2016, the World Health Organization 

(WHO) declared Zika Virus (ZIKV) a 

Public Health Emergency of International 

Concern (PHEIC) based on an 

extraordinary cluster of neurological 

disorders and temporal association with 

ZIKV, with 1.3 million non-congenital 

cases and 2,160 congenital cases in 2015-

2016 (15-18). Now, despite the WHO 

lifting its PHEIC warning and emergency 

designation (19), the neurodevelopmental 

consequences of ZIKV are only beginning 

to be understood. Currently, there are 84 

countries, territories, or subnational areas 

with evidence of vector-borne ZIKV 

transmission (20, 21). Thousands of new 

ZIKV infections continue to be reported 

throughout Latin America. New countries 

such as Mexico, Saint Martin, Curaçao 

and Trinidad and Tobago have reported 

CNS malformations and Guillain-Barré 

syndrome cases associated with ZIKV 

infection for the first time since February 

1, 2017 (20). Like malaria or yellow 

fever, ZIKV is a continuing regional 

threat rather than an urgent pandemic, 

however, the global risk assessment has 

not changed and ZIKV continues to 

spread geographically where competent 

vectors are present (20). As of March 1, 

2017, the national arboviral surveillance 

system (ArboNET) has reported 5,074 

cases in the United States (US) and 

38,306 cases in US territories (21).  

 

The Aedes mosquito species are chiefly 

responsible for the transmission of ZIKV, 

a Flavivirus, to humans and are 

predominantly found in tropical and 

subtropical regions (22, 23), which 

explains the high prevalence of ZIKV in 

countries along the equator. Classified by 

two transmission cycles, sylvatic (jungle) 

and suburban-urban, ZIKV is transmitted 

to humans from other species, and 

between humans via multiple routes (24). 

The sylvatic cycle involves viral 

transmission via blood between non-

human primates and mosquitos (25). 

Although this transmission cycle does not 

lead to direct infection in humans, it 

creates a large mosquito reservoir that 

heavily influences suburban-urban 

transmission. The suburban-urban cycle or 

human-mosquito-human transmission 

involves transmission of ZIKV from 

human to human, mosquito to human, or 

vice versa (25). The high rates of infection 

between humans is especially alarming 

because there are multiple routes of 

transmission and many infected adults are 

asymptomatic, which increases the risk of 

transmission prior to diagnosis (15, 25-
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33). In addition to mosquito bites, ZIKV 

can be transmitted through body fluids 

including saliva, urine, blood products, 

and semen (32, 33).  

 

Based on clinical examinations of 

microcephalic fetal tissues demonstrating 

the presence of ZIKV in fetal brains (16, 

34-36), and measurable ZIKV in the 

amniotic fluid of fetuses diagnosed with 

microcephaly (28, 34, 35, 37-43), the 

Centers for Disease Control and 

Prevention (CDC) declared that ZIKV 

causes microcephaly on April 13, 2016 

(21). Shortly thereafter, following a 

systematic review of the literature up to 

May 30, 2016, the WHO concluded that 

ZIKV infection during pregnancy is a 

cause of brain abnormalities, including 

microcephaly, and that ZIKV is a trigger 

of Guillain-Barré syndrome (24). 

Significantly, both reports acknowledged 

a primary route of ZIKV infection through 

vertical transmission, also known as 

congenital infection, in which the virus is 

passed in utero from the pregnant woman 

to the fetus. Transmission in this mode 

has resulted in a spectrum of 

neurodevelopmental abnormalities, 

including lissencephaly, 

ventriculomegaly, hydrocephalus and 

severe microcephaly (37, 44-48).  

Notably, as more infants are born and 

survive longer, recognition of the notable 

sequelae of ZIKV is growing. For families 

with infants found to have congenital 

ZIKV syndrome, the consequences of 

ZIKV and spectrum of CNS impairment is 

only now being appreciated. In addition to 

microcephaly, many infants have a 

diverse array of signs and symptoms, 

collectively named congenital Zika 

syndrome, including seizures, respiratory 

insufficiency, dysphagia, muscle 

weakness, clubbed feet, vision and 

hearing loss, and cognitive impairment (5, 

49). Given the variety of birth defects 

including CNS malformations, 

intracranial calcifications, ocular disease, 

hearing deficits, in combination with 

intrauterine growth restriction and 

increased risk of spontaneous abortion, 

the term congenital zika virus syndrome is 

used to encompass the broad range 

pathology and clinical indications of 

ZIKV infection in the infant (34, 37, 49-

54). Not surprisingly, the awareness and 

diagnosis of congenital ZIKV syndrome 

related sequelae are becoming more 

apparent and prominent as survivors enter 

childhood (37, 55, 56).  

 

Clinical Presentation of Zika Virus 

Nearly 80% of adults, including pregnant 

women, infected with ZIKV are 

asymptomatic (57-60), which makes the 

clinical diagnosis of ZIKV exceedingly 

difficult. Symptoms in adults, when 

present, are similar to other viral illnesses 

and can include malaise, fever, 

conjunctivitis, arthralgia, myalgia, fatigue, 

headache, retro-orbital pain, vomiting and 

lymphadenopathy (26, 57, 61-63). The 

criterion for clinical diagnosis is currently 

based on the compendium of 

symptomology, and requires the presence 

of a maculopapular rash with at least two 

of the following: fever, non-purulent 

conjunctivitis, polyarthralgia, and 

periarticular edema (57, 64-66).  

 

Together with symptoms and recent 

history of travel, a diagnosis of ZIKV can 

only be confirmed through laboratory tests 

on blood or other body fluids (24). Like 

other flaviviruses, ZIKV can be detected 

using reverse-transcriptase polymerase 

chain reaction (RT-PCR) and serology 

(67, 68). Specifically, ZIKV can be 

detected in most body fluids, including 

saliva, urine, cerebrospinal fluid, serum, 

tears, semen, breast milk, vaginal and 
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cervical mucous, and amniotic fluid (26, 

31-33, 69-73), and RT-PCR is best 

utilized for detection within one week of 

symptom onset (25, 49, 73, 74). IgM-

capture enzyme linked immune-sorbent 

assay, the only commercially FDA-

approved serologic test, can be used to 

test serum and cerebrospinal fluid after 4 

days of symptoms and for up to 12 weeks 

after infection (25, 49, 73, 75).  

 

In pregnant women who are suspected of 

ZIKV infection, ultrasonography is used 

to monitor potential microcephaly and 

other fetal and placental abnormalities, 

such as intrauterine growth restriction, 

anhydramnios and hydrops fetalis (5, 76-

80). In the fetal brain, absence of corpus 

callosum, abnormal gyration, 

hydranencephaly, ventriculomegaly, brain 

atrophy, and/or cerebral calcifications can 

be found (18, 25, 28, 30, 41, 47, 51, 55, 

65, 81, 82). These neurodevelopmental 

anomalies can be detected as early as 18 

to 20 weeks, but typically are not detected 

until the second and third trimester. A 

comprehensive review of the birth defects 

potentially related to ZIKV infection 

during pregnancy is presented in Honein 

et al., 2017 (49).   

 

The most profound symptom and 

hallmark of congenital ZIKV infection is 

microcephaly (16, 37, 47, 48, 51, 52, 55, 

83-85). Notably, the severe microcephaly 

that occurs with congenital ZIKV can 

often be accompanied by a fetal brain 

disruption sequence (FBDS), defined by 

overlapping cranial sutures, prominent 

occipital bone, craniofacial disproportion, 

and redundant scalp skin (54, 59, 86). In 

the US, microcephaly occurs in only a 

small subset of infected neonates, 

approximately 1-13% of all congenital 

ZIKV cases (55, 87, 88). The timing of 

viral exposure, viral load and gestational 

age of the fetus contributes to the severity 

of abnormalities in congenital ZIKV 

syndrome (16, 50, 59).  Infection during 

the first trimester of pregnancy is most 

likely to result in microcephaly and more 

severe neonatal outcome, because genesis 

and migration of neurons is occurring 

rapidly at that time (1-3, 5, 26, 55, 89) 

(Figure 1). Concomitant with 

microcephaly, craniofacial disproportion 

and multiple abnormalities occur in major 

brain structures, such as the corpus 

callosum and cerebellum, predisposing the 

infant to multiple neurological 

impairments (55, 90-92). Postnatal 

infection of the neonate typically causes 

mild symptoms, similar to those observed 

in adults, and reflects the relative 

maturation of the CNS at term compared 

to early in gestation (65, 87, 88). 

 

Clinically, microcephaly is defined as an 

abnormally small head size, which is 

measured using the occipitofrontal 

circumference (OFC). Microcephaly 

typically is diagnosed when the OFC at 

birth is less than the 3
rd

 percentile for age, 

when controlled for sex and gestational 

age (93). In severe cases of microcephaly, 

the skull may appear concave with 

overlapping sutures and abnormal skin 

folds (54, 86). In addition, other structural 

abnormalities that reflect the 

developmental timing of infection can be 

present, and include cortical and 

subcortical atrophy, hydrocephalus, 

parenchymal calcifications, 

polymicrogyria, lissencephaly and 

ventriculomegaly (26, 34, 48, 49, 54, 91, 

94, 95). The functional manifestations of 

these multiple structural brain 

abnormalities include epilepsy, 

intellectual delay, speech and motor 

control abnormalities, and vision and 

hearing loss (49, 96, 97). Importantly, 



Medical Research Archives. Volume 5, issue 5. May 2017. 

 

The Unifying Effects of Maternal-Placental-Fetal Axis Dysregulation on 

Neurodevelopment Following Infectious and Toxic In Utero Insults 

 

7 
Copyright 2017 KEI Journals. All Rights Reserved. 

 

these symptoms are not always apparent 

at birth.  

 

 

 

Effects of ZIKV on the Maternal-

Placental-Fetal axis 

Teratogenic infectious agents that are 

transmitted from mother to infant during 

pregnancy, childbirth, or breast-feeding 

have historically been classified as 

TORCH pathogens (Toxoplasmosis, Other 

including syphilis, varicella-zoster, 

parvovirus-B19, human immuno-

deficiency (HIV), Rubella, 

Cytomegalovirus (CMV), and Herpes 

simplex virus (HSV) (91, 98).  

Neurodevelopmental malformations have 

previously been linked to many viral 

infections, including CMV, rubella, West 

Nile, HIV, HSV, and Chikungunya, and 

each of these pathogens can cross the 

placenta (26, 84, 99-101). Interestingly, 

the structural brain abnormalities 

observed from congenital ZIKV infection 

are most similar to those due to CMV 

infection (84, 101) and ZIKV now joins 

the list of viral TORCH pathogens (29, 91, 

98). Given the rapid expansion of the 

CNS during the first trimester, there are 

multiple putative mechanisms of 

microcephaly.  Conclusive evidence for 

the precise molecular events leading to 

congenital ZIKV syndrome remain poorly 

defined. Dermal fibroblasts and epidermal 

keratinocytes are the primary targets of 

ZIKV infection, followed by infection of 

dermal dendritic cells, which facilitates 

systemic viral dissemination throughout 

the body (102). ZIKV transmission can 

occur through the maternal-placental-fetal 

axis during pregnancy through the 

circulation (5). Placental macrophages and 

cytotrophoblasts are the cell types 

primarily responsible for transplacental 

transmission of ZIKV from the pregnant 

woman to the fetus (5, 45, 103-105). Viral 

production in placental macrophages 

augments production of chemokines and 

cytokines, culminating in a robust 

inflammatory reaction (82, 89, 102, 106-

108). In addition to placental cells, ZIKV 

also infects vascular epithelial cells (45, 

103, 109), resulting in cell death and 

disruption of major vessels in the 

placental barrier. Cumulatively, these 

changes create a toxic placental 

microenvironment defined by excessive 

hypoxia-ischemia and inflammation that 

subsequently facilitates CNS injury 

through limited oxygen and nutrient 

delivery, and inflammatory-driven neural 

cell death.   

 

In addition to replicating in placental 

cells, ZIKV can overwhelm the maternal 

immune system and the placenta, and 

ultimately cross the immature blood-brain 

barrier to allow direct ZIKV uptake by 

neural cells (109). Once ZIKV enters a 

cell, it hijacks essential replication and 

assembly machinery, interfering with 

proliferation and survival of neural 

progenitors (26). In contrast to the 

changes in the transcriptome induced by 

the Dengue virus, ZIKV has a robust and 

selective impact on genes involved in 

DNA replication and repair (35, 110). 

Through specific cell-surface tyrosine 

kinase receptors such as AXL, and other 

adhesion molecules, ZIKV can invade 

developing radial glia, astrocytes, 

endothelia, microglia, and neural 

progenitor cells (35, 84, 111, 112). 

Interestingly, AXL is also expressed on a 

subset of placental trophoblasts (55, 111, 

112) and may correspond to the high 

efficiency of ZIKV infection in these cell 

types. Gene expression and proteomic 

analyses confirm several ZIKV-induced 

changes in protein and messenger RNA in 

infected neural cells, especially those 
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essential to proliferation, synapse 

organization, differentiation, migration, 

organelle localization, immune response 

and cell adhesion (89, 106, 109, 113, 

114). A neuroinflammatory reaction is 

also commonly observed, including 

microglial hyperplasia, astrocytic 

hypertrophy and macrophage, lymphocyte 

and leukocyte infiltration (94, 109, 115-

117).  Indeed, this neuroinflammatory 

activation can drive neural cell 

pathophysiology through the release of 

chemokines and cytokines and further 

immune cell recruitment and activation 

(26). Similarly, preclinical models 

demonstrate replication of ZIKV in radial 

glia and neural progenitors, major hubs of 

neuronal migration and neurogenesis, and 

confirm substantial augmentation of 

apoptosis and autophagy mechanisms of 

cell death (35, 42, 43, 81, 89, 106, 114, 

118, 119). The cumulative impact of the 

changes that modify proliferation and 

migration dynamics is a dystrophic brain 

(109). Overall, these data show CNS 

injury secondary to ZIKV-induced neural 

cell injury, plus ZIKV-induced placental 

insufficiency and inflammation, impairs 

neurogenesis and neural cell migration. 

The combination of placental and neural 

cell injury leads to microcephaly, 

encephalomalacia, hydrocephalus and 

additional CNS abnormalities common to 

congenital ZIKV syndrome (34, 78-80). 

Currently there is no cure for ZIKV; 

however, through increased understanding 

of ZIKV pathophysiology, preventative 

measures may be formulated and 

implemented, with treatments developed 

to aid the numerous infants born with 

brain injury secondary to congenital 

infection. Accordingly, current prevention 

efforts are focused on reducing infections 

in pregnant women by implementing 

travel restrictions prior to and during 

pregnancy, especially in geographical 

locations with known cases of Zika 

infection (25). Given the high probability 

of asymptomatic individuals (26), the 

CDC currently recommends high risk 

individuals, such as women who want to 

get pregnant or are pregnant, be screened 

and tested for Zika virus regularly (21). 

Like the CDC, the World Health 

Organization (WHO) also provides 

guidelines for preventing ZIKV 

transmission, and provides a framework 

for sexually active men and women in 

order to prevent possible adverse 

pregnancy and fetal outcomes (24). 

Specifically, in regions with active 

transmission of ZIKV, the WHO 

recommends pregnant women should 

consistently and correctly use condoms or 

abstain from sexual activity for at least the 

duration of the pregnancy (24). In regions 

with no active transmission of ZIKV, 

WHO recommends practicing safer sex or 

abstinence for a period of six months for 

men and women who are returning from 

areas of active transmission (24).  

 

Prenatal Opioid Exposure 

Opioid prescription rates have risen 

dramatically over the past several years, 

and according to the CDC, in some states, 

there are as many as 96-143 prescriptions 

for opioids per 100 adults per year (120). 

Similarly, there has been an increase in 

the number of overdose deaths involving 

heroin (121), and 188,468 pediatric opioid 

exposures were reported to US poison 

control centers from 2000-2015 (122).  

Consistent with this trend, substance use 

during pregnancy commonly occurs. 

Although concern regarding substance use 

in pregnancy is not new, it has recently 

increased with the breadth of the US 

opioid epidemic, including the impact on 

pregnant women and their infants (123, 

124). In 2011, the Substance Abuse 

Mental Health Services Administration 
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reported 1.1% of pregnant women abused 

opioids (125), with opioid use in 

pregnancy increasing from 1.19 to 5.63 

per 1000 births from 2000 to 2009 (126). 

Commonly thought to be exclusively 

related to heroin, morphine, methadone 

and buprenorphine use, prenatal opioid 

exposure often also occurs through the use 

and abuse of prescription opioids such as 

oxycodone and codeine (123, 124, 127). 

Indeed, several studies emphasize the 

increasing use of prescription opioids 

among women of childbearing age and 

pregnant women (123, 124, 128-130), 

with 22-30% of women filling at least one 

prescription for an opioid analgesic during 

pregnancy (129, 130). A dramatic increase 

in opioid-substitution programs for the 

treatment of opioid addiction has also 

been observed (127, 131). 

 

Opioid receptors are located throughout 

the developing CNS, including in the 

cerebral cortex, amygdala, caudate, 

putamen and nucleus accumbens, and 

through their action on endogenous opioid 

receptors, act to relieve pain (132, 133). 

During pregnancy, however, opioids 

rapidly cross the placenta and via the fetal 

circulation have a direct impact on the 

developing fetal organ systems including 

the CNS (134-136). For women with 

opioid use disorder, the abrupt 

discontinuation of opioids in pregnancy 

can result in preterm labor, fetal distress, 

or fetal demise (123, 127). Notably, the 

incidence of preterm birth among opioid-

dependent mothers is nearly 3 times the 

national average for non-opioid-dependent 

mothers (137, 138), suggestive of 

placental inflammation and instability. 

Infants exposed to opioids in utero have 

increased neuropsychological dysfunction, 

including impaired executive function and 

attention (134, 139-142). While studies in 

adults indicate that opioids can induce 

structural CNS changes, with substantial 

changes in circuits related to pain and 

rewards, current knowledge of CNS 

changes in children with in utero opioid 

exposure is based on a few small studies 

(134, 143, 144).  

 

Clinical Presentation of Prenatal 

Opioid Exposure 
As opioid use among pregnant women 

continues to rise, the rate of infants 

experiencing opioid withdrawal has 

similarly increased in the US. This 

postnatal syndrome, known as neonatal 

abstinence syndrome (NAS), is a 

withdrawal syndrome due to drug 

exposure in utero, and it has grown 

approximately five-fold in the past decade 

(123, 124). It is estimated that an infant 

suffering opioid withdrawal is born every 

25 minutes (145, 146), and NAS occurs in 

55-94% of newborns whose mothers were 

addicted to or treated with opioids while 

pregnant (127, 147). In 2012, NAS was 

diagnosed in 21,732 infants in the US, and 

there is noted increased prevalence 

globally, including England, Canada and 

Western Australia (127, 148, 149). 

However, 80% of opioid prescriptions 

worldwide are distributed in the US (122, 

150). NAS can result from the use of 

legitimately prescribed drugs, from the 

abuse of prescription drugs, or from the 

use of illegal opioids like heroin. 

Accordingly, maternal maintenance 

therapy, which includes treatment for 

opioid addiction with methadone or 

buprenorphine, can also result in 

withdrawal symptoms in the infant after 

delivery (151).   

 

Owing to the timing of maternal drug use, 

drug type, and infant metabolism, the 

presentation of NAS may be delayed (123, 

131, 147, 152, 153). Similarly, diagnosis 

is often difficult due to relatively vague 
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symptoms that mimic other neonatal 

issues, dependent on the gestational age of 

the infant. A summary of clinical 

manifestations and other consequences of 

maternal opioid use is reviewed in 

McQueen et al (127). While seizures and 

lethargy are readily apparent to clinicians, 

irritability, poor feeding and autonomic 

instability may have more subtle 

presentations. In term infants, the 

Finnegan Neonatal Abstinence Scoring 

System, also known as the modified 

Neonatal Abstinence Scoring System, 

may be used to quantify the severity of 

NAS and guide therapy (147, 154-156). 

The 21-item scale provides a cumulative 

score based on signs of neonatal opioid 

withdrawal (127, 147, 156, 157). If the 

assessment reveals that a neonate has 

symptoms consistent with NAS, non-

pharmacological interventions such as a 

calm rooming environment with minimal 

stimuli and supportive care are first 

implemented (125, 127, 158). 

Pharmacologic intervention, such as 

morphine and methadone, are important 

components of clinical management when 

non-pharmacologic care is insufficient to 

mitigate signs and symptoms of NAS 

(127, 159).  

 

The Effects of Opioids on the Maternal-

Placental-Fetal Axis 
The pathophysiology of CNS injury 

related to prenatal opioid exposure is 

multifactorial and complex. The 

multifaceted social and environmental risk 

factors related to maternal health and 

prenatal care, in addition to the prenatal 

opioid exposure, also impact the 

developmental trajectory of the CNS 

(134). Opioids readily cross the placenta 

through passive diffusion because they are 

typically water soluble and lipophilic, 

with low molecular weight (160). 

Notably, as gestational age increases, 

transmission of opioids across the 

placenta also increases. This phenomenon 

is primarily related to the reduced 

developmental expression of P-

glycoprotein (P-gp), a drug efflux 

transporter that has decreasing levels and 

activity with increasing gestational age 

(125, 161). This facilitates an increased 

rate of opioid transfer from the maternal 

to the fetal circulation (125, 161). Indeed, 

clinical consequences of maternal opioid 

use in the fetus can lead to notable 

intrauterine growth restriction, abruption 

placentae, and preterm labor (124, 127, 

137, 161, 162).  Opioids affect placental 

integrity and function, leading to reduced 

nutrient and oxygen delivery to the fetus, 

consistent with stress and injury through 

the maternal-placental-fetal axis (136, 

152). Given the role of the placenta in the 

metabolism and transfer of opioids to the 

fetus, it is clear that placental function is 

also a critical determinant of fetal CNS 

injury and clinical presentation of opioid-

related symptoms following birth (127, 

147, 163). 

 

Clinical outcomes in the newborns and 

children exposed to opioids in utero, 

including heroin, reveal low birth weight, 

small head circumference, and smaller 

brain volumes (124, 127, 134, 162, 164). 

Specifically, these children have a smaller 

pallidum and putamen (164). These deep 

nuclei are critical to the function of 

frontal-striatal circuits implicated in 

attention and locomotor activity (164-

166). Volumes of the basal ganglia, 

thalamus, and cerebellar white matter are 

also reduced in children with prenatal 

opioid exposure (134). Beyond standard 

structural imaging, diffusion tensor 

imaging (DTI) studies reveal white matter 

microstructural abnormalities indicative of 

impaired connectivity and abnormal 

cerebral circuit development, including 
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reduced fractional anisotropy and 

increased radial diffusion in deep, central 

and posterior white matter tracts in infants 

with opioid exposure (134). Alteration of 

these white matter tracts place children at 

risk for cognitive and behavioral 

difficulties including lower mental 

developmental index, shorter attention 

spans, and poor social engagement 

throughout life (167). These data are 

consistent with the hypothesis that 

prenatal opioid exposure has direct 

neurotoxic and gliotoxic effects (168), and 

may be especially detrimental to 

developing neural cells prior to 

myelination of axons. Additionally, opioid 

receptors are present on neurons, 

oligodendroglia and astroglia (169), and 

opioid receptor activation may directly 

affect neural cell migration and survival 

(164). In preclinical studies, opioid 

exposure results in an increase of 

apoptosis in human neurons and microglia 

in vitro (168), as well as reduced dendrite 

length and branching in cortical neurons 

concomitant with deficits in learning and 

memory in rodents (134, 170, 171). 

Collectively, these data emphasize the 

detrimental effects of opioid exposure on 

CNS structure and function. Pregnant 

women and children are frequently 

overlooked in the efforts to prevent opioid 

exposures, and the incidence of NAS and 

associated increases in health care costs 

warrant a consistent and comprehensive 

approach to mitigating the negative 

outcomes for affected infants, their 

mothers, and the health care system (122, 

127).  

 

Prenatal Alcohol Exposure 
The global prevalence of alcohol use in 

pregnancy is estimated to be 9.8% (172, 

173).  Like ZIKV and opioid use in 

pregnancy, prenatal alcohol exposure 

(PAE) is an expansive public health 

problem. Despite current CDC 

recommendations to abstain from alcohol 

use before and during pregnancy (174), 

approximately 10-15% of women in the 

US report drinking some alcohol during 

their pregnancy, with 3-5% confirming 

heavy drinking throughout all stages of 

pregnancy (175, 176). The impact of PAE 

is devastating, and is the principle cause 

of fetal alcohol syndrome (FAS) (177-

179). FAS in the general population is 

estimated at 14.6 per 10,000 people, and it 

is projected that 1 in every 67 women who 

consume alcohol during pregnancy will 

deliver a child with FAS (172). Indeed, 

FAS is a disabling potential outcome of 

drinking during pregnancy, and is the 

most severe and visibly identifiable form 

of fetal alcohol spectrum disorder 

(FASD) (172, 180-183). Representing a 

multitude of behavioral and cognitive 

disorders (174, 180, 184), the American 

Academy of Pediatrics (AAP) estimates 

that 2-5% of first grade students suffer 

from a combination of deficits associated 

with FASD (174, 176).  

 

Alcohol use during pregnancy is an 

established risk factor for adverse 

antenatal outcomes including stillbirth, 

spontaneous abortion, preterm birth, 

intrauterine growth restriction and low 

birth weight (185-188). Together, these 

insults place infants at risk for 

microcephaly, epilepsy, cerebral palsy, 

cognitive deficits and attention deficit 

disorders (179, 181, 189-192). Although 

the severity of these deficits associated 

with PAE are time, dose and exposure 

dependent (190), other risk factors can 

escalate the degree of these 

neurodevelopmental deficits including 

poor maternal nutrition, genetic 

polymorphisms, inadequate access to 

health and prenatal care and the 

concurrent use of other substances 
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including opioids (190). PAE impairs 

hippocampal-mediated working memory, 

synaptic plasticity, cerebellar-motor 

coordination, cortical organization, 

executive functioning, motor function and 

social behavior, but also augments 

attention disorders and neuropsychiatric 

disorders, all of which become more 

apparent and debilitating throughout life 

(192-201). 

 

Clinical Presentation of PAE 
FASD causes a spectrum of clinical 

abnormalities in the developing infant, 

and commonly affects the CNS, ocular, 

craniofacial, cardiovascular and endocrine 

systems (For Review see Del Campo 

2016) (202). Infants born with FASD are 

commonly classified as small for 

gestational age (<10%tile for age), which 

is associated with poor 

neurodevelopmental outcomes compared 

to infants born with appropriate weight, 

length and OFC for gestational age (203). 

Infants with FASD may present with 

facial dysmorphisms, hallmarked by short 

palpebral fissures, an elongated mid-face, 

long and flat philtrum, thin upper 

vermilion, flattened maxilla, and 

hypoplasia of the nasal bridge (For 

Review see Del Campo 2016) (202). PAE 

interferes with highly sophisticated 

neurodevelopmental pathways during 

gestation, which can lead to multiple CNS 

abnormalities. Notably, development of 

the face and the brain are intimately 

connected, as the brain provides the 

structural, cellular, and molecular input 

that guides the development of the face 

(202).  

 

Using standard and advanced imaging 

techniques, structural and diffusion MRI 

investigations reveal significant brain 

injury in multiple regions, including the 

frontal cortex, corpus callosum, striatum, 

caudate nucleus, thalamus and cerebellum 

(191, 192, 194-200). Significantly, the 

corpus callosum, a major white matter 

structure essential for interhemispheric 

communication, has been reported to be 

disproportionately smaller in alcohol-

exposed neonates (195, 199, 200, 204-

206). Structural deficits in the corpus 

callosum may lead to poor cognitive 

performance, and impaired sensory, motor 

and higher-order neural communication 

(204-206), as a result of poor 

connectivity, dysregulated 

interhemispheric integration, and impaired 

processing. Likewise, diffusion imaging 

studies link abnormal callosal 

microstructure and structural coherence 

with impaired myelination, diffuse fiber 

bundles and poor axonal integrity (204, 

207). Significantly, these neuroimaging 

studies corroborate the first autopsy 

studies of FAS, including those revealing 

impaired cell migration, and agenesis or 

thinning of the corpus callosum (183, 

208).  

 

Aggregate effects on neural cell 

proliferation, migration and connectivity 

yield a spectrum of PAE-related 

intellectual, behavioral and cognitive 

deficits, which become more pronounced 

during an affected individual’s life. At the 

structural level, the first trimester effects 

of alcohol toxicity, like ZIKV, manifest as 

impaired neural tube development and 

microcephaly. The facial dysmorphology 

characteristics are often present and 

include other midline structures, such as 

the corpus callosum (202, 209). Primarily, 

these sequelae are related to impaired cell 

migration, neurogenesis, synaptogenesis, 

and oligodendrogenesis (209). In the 

second and third trimesters, alcohol 

perturbs cell proliferation and induces 

errors in migration, while directly 

activating the molecular machinery of cell 
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death pathways, thereby catalyzing 

massive amounts of pathological cell 

death, impaired synaptic plasticity, and 

oxidative stress, thus resulting in long-

term functional and behavioral deficits 

(209).  

 

Effects of Ethanol on the Maternal-

Placental-Fetal Axis 
Alcohol consumed by pregnant women 

easily diffuses through the maternal-

placental-fetal axis, and places fetal CNS 

development at risk (189, 190, 210). 

Specifically, placental dysfunction 

secondary to maternal alcohol 

consumption, plus augmented and 

prolonged alcohol exposure to the fetus, 

are highly damaging to the developing 

CNS. Alcohol impairs placental growth 

and increases perfusion pressure, which 

results in structural changes in the 

placenta, and reduced blood flow and 

nutrient transport to the fetus throughout 

pregnancy (190, 211, 212). Together with 

the direct toxicity and teratogenic effects 

of alcohol, newborns exposed to alcohol 

in utero have a higher probability of poor 

neurological outcomes due to significant 

placental dysfunction, including 

insufficiency and inflammation (190). 

Prior to 20 weeks’ gestation, alcohol 

crosses the placenta into the amniotic 

fluid and directly diffuses into the fetus 

through the immature fetal dermis (189, 

213). After 20 weeks’ gestation, the fetus 

begins absorbing alcohol that has passed 

into the amniotic fluid via swallowing and 

intramembranous absorption (189, 213). 

Consistent with the normal cycling of 

amniotic fluid, alcohol is recycled such 

that alcohol is excreted unchanged in fetal 

urine, and again subject to reuptake (213, 

214). Compounding these mechanisms, 

umbilical vessels are extremely sensitive 

to alcohol and increased placental 

resistance (210).  This effect of alcohol on 

the umbilical cord vessels results in 

vasoconstriction and further impairment 

of alcohol elimination rates from the fetal 

compartment (211). Women who drink 

alcohol during pregnancy also have a 5 to 

7-fold increased risk of infection, such as 

chorioamnionitis (215). The increased risk 

of chorioamnionitis leads to further 

increased incidence of preterm birth. 

Together, these effects compound the 

direct effect of alcohol toxicity on the 

developing CNS by facilitating hypoxia-

ischemia and decreasing oxygen 

availability to the developing fetus. 

While the severity of structural and 

functional CNS injury associated with 

fetal alcohol exposure is multifactorial, 

key cellular and molecular mechanisms 

contribute to the pathophysiology. 

Alcohol readily interacts with glutamate 

and γ-aminobutyric acid (GABA) 

receptors (GABAAR), where it acts as an 

antagonist and agonist, respectively (209, 

216). At GABAARs, alcohol is a positive 

allosteric modulator, facilitating 

GABAergic neurotransmission (216). 

This receptor-mediated effect has 

profound impacts on excitatory and 

inhibitory neurotransmission. In adults, 

facilitation of GABAergic 

neurotransmission defines the CNS 

depression and disinhibition related to 

alcohol consumption (216).  However, 

given that GABAergic signaling is more 

prominent in the developing CNS, the 

resultant environment favors neuronal 

excitation and neurotoxicity related to 

developmental timing of potassium 

chloride co-transporters that direct 

chloride gradients in neural cells (217-

220). Alcohol also modulates presynaptic 

glutamate release (209), which further 

dysregulates synaptic signaling in the 

developing CNS (209). Besides these 

effects on neurotransmitter receptors, 

alcohol increases free radical production, 
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stresses cellular metabolism via increasing 

acetylaldehyde levels, directly facilitates 

cell death through mitochondrial injury, 

caspase activation and DNA 

fragmentation, and limits production of 

essential neurotrophic factors (209). 

Taken together, it is clear that alcohol has 

multiple detrimental mechanisms of 

action that creates a cerebral 

microenvironment toxic to developing 

neural cells and favoring cell death.  

 

Chorioamnionitis 

Chorioamnionitis (CHORIO), defined as 

inflammation of the placenta and 

surrounding membranes and representing 

a combination of infection plus hypoxia-

ischemia (HI), has recently been 

appreciated in a significant number of 

preterm and term infants with perinatal 

brain injury, including those with stroke 

(145, 146, 221-231). CHORIO is the most 

common abnormality found in placentas 

from very preterm infants, and is a 

principle cause of preterm birth (221, 223, 

224, 232). Preterm birth, or delivery prior 

to 37 weeks’ gestation, is the primary 

cause of perinatal morbidity and mortality 

in developed countries and impacts 

approximately 12% of all deliveries in the 

US (233).  

 

Preterm infants are at increased risk for 

numerous neurological complications 

including intraventricular hemorrhage, 

encephalopathy of prematurity, and 

periventricular leukomalacia  (234-236). 

Among children born at <28 weeks 

estimated gestational age (EGA), 30 to 

50% will have borderline (IQ<85) or 

severe (IQ<70) cognitive delay (237). 

Typically, deficits are cumulative and 

children with cognitive and behavioral 

problems often have cerebral palsy, 

impaired learning, vision and hearing loss, 

epilepsy, and overall poor physical health 

that contributes to the prematurity-related 

burden of chronic disease in adulthood 

(238, 239). Owing to cognitive and 

behavioral impairments, children have 

more trouble coping with other deficits 

and experience difficulty transitioning to 

adult independence (240). The resultant 

societal costs are extensive and exceed an 

estimated annual expense of 26 billion US 

dollars, an estimate that even then 

significantly underestimates the special 

education, neuropsychiatric and medical 

management required for former preterm 

infants as they age (241). Indeed, recent 

recognition that prenatal care and 

prevention efforts are ineffective in 

reducing the burden associated with 

neonatal mortality and morbidity in the 

US collectively emphasizes the absolute 

necessity that novel neural repair 

strategies and pathophysiological 

mechanisms be identified (242, 243). 

 

Specifically, CHORIO affects 40-80% of 

very preterm deliveries, and 20-34% of 

deliveries at term (222, 244, 245). In term 

infants with HI encephalopathy, the 

presence of CHORIO predicts limited 

responsiveness to hypothermia treatment 

(244, 246). Indeed, recent neuroimaging 

studies of preterm infants with detailed 

placental histology and neonatal 

neuroimaging at term equivalent age show 

histological CHORIO is an independent 

antenatal risk factor for preterm brain 

injury (247). Additionally, placental 

abnormalities are an independent risk 

factor in the pathogenesis of perinatal 

stroke (223, 224, 248-250). 

 

CHORIO is most often caused by 

infection with Mycoplasma or 

Ureaplasma species (251, 252). With 

progression through the maternal-

placental interface and into the fetus, 

CHORIO induces fetal inflammatory 
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response syndrome (FIRS) (221, 253). 

FIRS exacerbates the detrimental effects 

of CHORIO on long-term neonatal 

outcome, increasing the risk of neonatal 

sepsis, intraventricular hemorrhage, 

bronchopulmonary dysplasia and cerebral 

palsy through a massive fetal immune 

reaction with increased cytokine 

production and immune cell recruitment 

(221, 254-261). In the absence of other 

risk factors, the cytokine milieu of 

CHORIO can facilitate a hypercoaguable 

state or cause direct thromboembolism to 

the fetal brain (260, 262). Notably, 

prenatal and postnatal inflammatory 

pathophysiology predicts severe 

neurologic sequelae later in life (10-12), 

with the risk for abnormal neurologic 

outcome highest for preterm infants with 

both CHORIO and placental perfusion 

defects (10-12).  

 

Clinical Presentation of CHORIO 
There are numerous risk factors for 

development of CHORIO including 

premature prolonged rupture of the 

membranes, long duration of labor, 

nulliparity, Group B Streptococcus (GBS) 

infection, urinary tract infections (252, 

263), prenatal alcohol exposure, and 

prenatal opioid exposure (215). CHORIO 

is diagnosed with clinical or histological 

criteria (222, 227, 252, 264). Maternal 

fever (temperature greater than 100.4°F), 

maternal tachycardia (>100 beats per 

minute), fetal tachycardia (>160 beats per 

minute), uterine fundal tenderness, and 

purulence or foul odor of amniotic fluid 

are all symptoms of clinical CHORIO 

(252, 264). The histological diagnosis of 

CHORIO is made by placental and 

umbilical cord pathology. It is defined as 

inflammation of the chorion, amnion and 

placenta, and robust presence of 

polymorphonuclear leukocytes (PMNs), 

amnion basement membrane thickening 

and chorionic microabscesses (60, 146, 

232, 265, 266). Often, CHORIO co-occurs 

with decidual vasculopathy, villous 

infarction, and increased perivillous and 

intervillous fibrin deposition (267). 

Significantly, CHORIO affects placental 

permeability and blood flow (267), 

facilitating HI and transmission of 

inflammation to fetuses of all gestational 

ages (262).  With histological signs of 

CHORIO present in as many as 42% of 

placentas from unremarkable pregnancies 

(261, 262), it is paramount that greater 

understanding of the role of sterile and 

non-sterile placental inflammation in 

pregnancy be ascertained. 

 

Effects of CHORIO on the Maternal-

Placental-Fetal Axis  
The pathophysiology of CHORIO is 

hallmarked by inflammation and HI, at the 

maternal-placental interface that directly 

impacts the fetal microenvironment (259). 

Uteroplacental hypoperfusion leads to 

fetal hypoxia and diminishes fetal 

nutrition, including impaired removal of 

metabolic products from circulation (146, 

259, 265, 268-272). CHORIO generates 

substantial inflammation and engenders a 

placental, fetal systemic, and fetal CNS 

inflammatory response characterized by a 

robust and highly dysregulated pro-

inflammatory cytokine and chemokine 

profile (146, 273-275). Cytokines are 

soluble immune mediators secreted in 

response to immunological challenges 

such as infection, and are essential for 

normal CNS development and normal 

labor and delivery (276). The birth 

process is typically associated with a 

measured cytokine cascade initiated by 

inflammatory infiltration of the cervix, 

fetal membranes, and myometrium, which 

highlights the homeostatic and 

physiologic roles of cytokines in normal 

development (253, 277). Despite this, 
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aberrant cytokine production with 

infection that affects the maternal-fetal 

interface in the context of ascending 

infection from the lower genital tract to 

the chorioamnion is a major component of 

extreme preterm labor (232, 266, 278-

281). Cytokines produced in response to 

intrauterine infection and inflammation 

cause damage to the developing CNS 

(273-275). Notably, clinical data reveal 

that preterm newborns have extensive and 

extended elevations in inflammatory 

proteins throughout the perinatal period 

and elevations in multiple, distinct 

functional inflammatory protein classes 

(282-284). Together, these features are 

strongly linked to neurologic impairment 

in these infants later in life (282-284).  

 

CHORIO triggers an inflammatory 

response in maternal-placental-fetal axis 

that can result in injury to the fetal brain 

and impair neurodevelopmental trajectory 

both before and after birth (285, 286). 

Fetal inflammation initiates a 

neuroinflammatory response through 

peptides, cytokines, and bacterial products 

in circulation that cross the blood-brain 

barrier (285, 286), followed by a 

controlled innate immune response 

activation by CNS cells such as microglia 

and peripheral immune cells including 

neutrophils and leukocytes. Microglia are 

the innate immune cells of the brain and 

their activation enables 

neuroinflammation and modulates 

excitotoxicity and free radical injury. 

Together with direct effects on developing 

brain circuitry and oligodendrocytes, the 

primary result is cell death and diffuse 

encephalopathy involving profound gray 

and white matter injury (287-290). Indeed, 

numerous studies confirm decreased 

microstructure in the corpus callosum, 

cingulum, internal capsule, external 

capsule and cerebellum. Together with 

changes in the thalamus in preterm 

infants, these abnormalities correlate with 

poor outcome later in life, especially with 

respect to cognitive, behavioral, and 

motor performance (221, 247, 258, 291-

296). Like ZIKV, prenatal alcohol 

exposure, and neonatal abstinence 

syndrome, the brain injury associated with 

CHORIO and preterm birth is easily an 

expansive review topic in its own right, 

with numerous contributions from 

multidisciplinary investigative teams 

around the globe. However, most data 

overwhelmingly support that injury begins 

in utero for a significant proportion of 

preterm infants and emphasize the 

absolute necessity of methods for 

detecting fetuses and placentas at risk as a 

means of reducing brain injury and life-

long impairment in this exceedingly 

vulnerable patient population. 

 

Conclusion 

As the first point of contact, physicians 

and other health care providers are in a 

position to fulfill a crucial role in the 

primary prevention of brain injury in 

infants, including fetal alcohol syndrome, 

neonatal abstinence syndome, Zika virus 

and chorioamnionitis. Steps must be taken 

to improve awareness about the incidence 

of preterm births, alcohol use, prescription 

prescription opioid abuse and infections 

during pregnancy within the medical 

community and the public. For Zika virus, 

prenatal alcohol and opioid exposure, a 

critical issue is ensuring that pediatric 

clinicians are aware of maternal exposure, 

and thus identify infants who should be 

tested and provided appropriate followup 

for neurodevelopmental issues (49). 

Similarly, it is important that public health 

measures be increased to educate the 

public about the effects of toxins and 

illness before and during pregnancy. Safe 

and judicious prescribing of opioids are 
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encouraged in women of childbearing age, 

as is recording a thorough and accurate 

medical history including international 

travel, recreational drug use such as 

marijuana and methamphetamine in 

addition to opioid and alcohol use, and 

history of medications including selective 

serotonin reuptake inhibitors and 

benzodiazepines. While the focus was on 

opioids and alcohol within the present 

review, polysubstance use and abuse in 

pregnant women and the subsequent effect 

on the fetus cannot be overlooked (297-

303). Marijuana use is one of the most 

commonly used drugs in pregnancy and 

lactation. This is of great concern given 

the lipophilic nature of cannabis and its 

metabolites thus allowing for rapid 

transfer through the maternal-placental 

fetal axis. Numerous reports of cannabis 

exposure during critical periods of 

prenatal development detail increased 

risks for structural and functional brain 

injury, including neuropsychiatric, 

behavioral, and executive function 

impairment later in life (297, 298, 300-

302).  

 

Minimizing brain injury in infants hinges 

on identification of critical pathways 

underlying the developmental program 

shared by both the placenta and brain. 

This information is essential for 

understanding the fundamental 

mechanisms of transmission of 

inflammatory signaling through the 

placenta and blood-brain barrier and 

subsequent impact on neural development. 

Disruptions in placental function directly 

affect organ maturation, and the CNS is 

particularly vulnerable because of its 

protracted development throughout 

gestation and postnatally. Individual and 

specific windows of vulnerability are 

defined by the gestational age in which 

infectious agents or toxins are most likely 

to be transmitted to the fetus and have 

detrimental consequences (5). This 

conferred vulnerability varies for different 

agents, and is based on both pathogen and 

host factors, including a complex 

interplay between the cellular, molecular 

and anatomic factors through the 

maternal-placental-fetal axis, which 

evolves with gestation (5). Cumulatively, 

infections and toxins during fetal 

development have persistent and chronic 

impact beyond neurogenesis and neural 

cell development through inflammation.  

 

Limited avenues for early detection and 

diagnosis are additional challenges facing 

Zika virus, prenatal alcohol and opioid 

exposure, and preterm infant patient 

populations. However, the placenta may 

be key to early diagnosis, and 

stratification for emerging therapies, with 

the establishment of pathophysiology 
specific biomarkers linked to brain injury. 

Even if novel therapies are discovered to 

treat CNS injury and improve 

neurological outcome, definitive medical 

diagnoses are difficult early in life, thus 

reducing timely and appropriate medical 

and supportive care. Clinicians often rely 

on the appearance of neurological deficits 

and delayed developmental milestones as 

the infant matures to diagnose 

neurodevelopmental insults, which limits 

the use of effective interventions prior to 

irreversible CNS injury in the neonatal 

period. Indeed, early indicators of adverse 

events are needed to contribute to the 

ontogeny of impairment as it unfolds 

across the development, and more 

sensitive detection measures and earlier 

recognition of phenotypes by pediatric 

and primary care physicians will help 

ensure appropriate and timely evaluation 

and follow-up of affected infants. 

Undoubtedly, more complete, 

comprehensive, and multi-specialty 
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clinical assessment of infants will be 

needed to fully describe the extent of the 

brain abnormalities and other adverse 

outcomes in affected fetuses and infants 

exposed to alcohol, opioids, viruses and/or 

bacterial infections. Unquestionably, 

clinical care that is multidisciplinary, 

collaborative, compassionate and based on 

the identified needs of the mother-infant 

dyad will directly benefit all patients with 

toxin or infectious agent exposure, 

together with improved diagnosis and 

preclinical research uncovering 

fundamental mechanisms of brain injury 

to facilitate improved neurodevelopmental 

outcomes amongst our tiniest and most 

vulnerable patients. 
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