Biological and therapeutic properties of the seaweed polysaccharides

Leonel Pereira

Author’s affiliations:
1. MARE (Marine and Environmental Sciences Centre), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal

* Corresponding author: Leonel Pereira, E-mail: leonel.pereira@uc.pt

Abstract

Seaweed polysaccharides isolated from the cell walls of various species of algae, possess immunomodulatory, anti-inflammatory, antiviral, antitumor, antithrombotic, anticoagulant and antioxidant bioactivities.

Within the group of polysaccharides extracted from algae there are the phycocolloids. Colloids are extracted compounds that form colloidal solutions, an intermediate state between a solution and a suspension; they can be used commercially as thickeners, gelling agents and stabilizers for suspensions and emulsions. Hydrocolloids are carbohydrates that when dissolved in water form viscous solutions.

Sulfated galactans (e.g. agars, carrageenans, porphyran) can be obtained from red algae, (e.g. ulvans) from green algae, alginites and other sulfated polysaccharides (e.g. ascophyllan, laminaran and fucoidan) are obtained from selected brown algae. The historic origin of the main phycocolloids and other seaweed polysaccharides (e.g. agar, carrageenan, alginic acid - alginites), their chemistry, uses and bioactivities are described in this review.

Keywords: Macroalgae; Hydrocolloids; Sulfated galactans; Sulfate content; Bioactivities

1. Introduction

Seaweeds (or macroalgae) are aquatic photosynthetic organisms belonging to the domain Eukarya and to kingdoms Plantae (green and red algae) and Chromista (brown algae). Although classification systems have varied greatly over time and according to the authors, it is generally agreed that:

a) the green algae are included in the phylum Chlorophyta and their pigmentation is identical to that of terrestrial plants (chlorophyll a, b and carotenoids);

b) the red algae belong to the phylum Rhodophyta and their photosynthetic pigments are chlorophyll a, phycobilins (R-phyco-cyanin and R-phycoerythrin) and carotenoids...
ids, mostly β-carotene, lutein and zeaxanthin;

c) the brown algae are included in the phylum Ochrophyta (or Heterokontophyta), class Phaeophyceae and their pigments enclose chlorophylls a, c and carotenoids, dominated by fucoxanthin [1-3].

Macroalgae are known to be enriched in polysaccharides, with concentrations that can vary in the range of 4% to 76% of dry weight [4]. Globally, these are mainly structural cell wall polysaccharides, although considerable amounts of mucopolysaccharides and storage polysaccharides can occur in specific species [3,5,6].

The seaweed hydrocolloids, associated with the cell wall and intercellular spaces, are mainly produced by red and brown algae. Several species of red algae (Rhodophyta) produce galactans (e.g. carrageenans and agars) and of brown algae (Phaeophyceae) produce uronates (alginates) [7-10].

Sulfated galactans (e.g. agars and carrageenans) can be obtained from red algae, and alginates and other sulfated polysaccharides (e.g. laminaran and fucoidan) are obtained from brown algae. Phycocolloids are used in food industries as natural additives and have different European codes: E400 (alginic acid), E401 (sodium alginate), E402 (potassium alginate), E403 (ammonium alginate), E404 (calcium alginate), E405 (propylene glycol alginate), E406 (agar), E407 (carrageenan) and E407a (semi-refined carrageenan or “processed Eucheuma seaweed”) [10]. Agar, alginates and carrageenans are the ones with the highest economic and commercial significance, since these polysaccharides exhibit high molecular weights, high viscosity and excellent gelling, stabilizing and emulsifying properties. They are extracted in fairly high amount from the algae. All these polysaccharides are water soluble and could be extracted with hot water or alkaline solution [11].

The historic origin of the main phycocolloids (agar, carrageenan, and alginate) and other seaweed polysaccharides (e.g. ulvan, porphyran, fucoidan, laminaran, ascophyl lan), their chemistry, uses and bioactivities are described in this review.

2. Polysaccharides from green algae (Chlorophyta)

2.1. Ulvan

Ulvan is a sulfated, water-soluble polysaccharide which have physio-chemical and biological features of great potentials in food, pharmaceutical, agricultural, and chemical applications [12,13].

Ulvan may represent 8 - 29% of algal dry weight and is produced by some species belonging to the Phylum Chlorophyta (green algae), mostly belonging to the Class Ulvophyceae [14]. It is mainly made up of disaccharide repeating sequences composed of sulfated rhamnose and glucuronic acid, iduronic acid, or xylose [15,16].

The two major repeating disaccharides are aldobiuronic acids designated as: type A, ulvanobiuronic acid 3-sulfate (A3s) and type B, ulvanobiuronic acid 3-sulfate (B3s) (Figure 1). Partially sulfated xylose residues at O-2 can also occur in place of uronic acids. Low proportions of galactose, glucose, mannose and protein were also generally described as components of ulvan. Additionally, minor repeating units were being reported to contain sulfated xylose, replacing the iduronic acid or glucuronic acid components [12,13,17].
Ulvan have exhibited strong antioxidant [18,19], anticoagulant, antithrombotic [20], antitumor [21], immune-stimulatory [22], anti-inflammatory [22,23], antiviral [24,25], antibacterial [26], antiprotozoal [12], anti-hypercholesterolemic [27], and antihyperlipidemic [28] activities; used also for hyperplasia prevention, gastrointestinal, regenerative and nanomedicine applications [29,30].

Alves et al. [31] determined the cytotoxicity of ulvan via MTT test (Methyl Thiazolyl Tetrazolium - colorimetric assay for assessing cell metabolic activity), using fibroblast-like cells were incubated with ulvan, in vitro. Quantified protein and total DNA stands data were directly correlated with hyaluronic acid use as control (non-cytotoxic); in the studies conducted by these researchers [31], ulvan showed encouraging results in terms of cytotoxicity. Meanwhile, cytotoxicity is one of the most important factors to determine the use of a biomaterial for medical purposes, as in tissue engineering and wound healing [32]. Ulvan can be used in biomedical applications, especially in tissue engineering. Bio-functionalized ulvan hydrogels with ALP (Alkaline Phosphatase) enzyme served as inducers of mineralization in osteoblastic differentiation [32,33] and the cytocompatibility of ulvan as well as it relative membrane are promising features for scaffold development [34,35]. The inter-molecular charges of ulvan and chitosan (i.e. anionic and cationic charges respectively) produced stable supramolecular structures via electrostatic interactions and could also form stabilized membranes. Ulvan/chitosan poly-electrolytes were found to mimics the extracellular matrix structure providing points of attachment for osteoblasts, believed to be enhanced by the nanofibrous structure of this construct. It is suggested that this construct could be a suitable scaffold for applications in tissue engineering [32,33].

3. Polysaccharides from red algae (Rhodophyta)

3.1. Carrageenans

Carrageenan has been used in Europe and Asia for centuries as a thickening and stabilizing agent in food. In Europe, the use of carrageenan began in Ireland more than 600 years ago when, in the small village on the southern coast of Ireland, called "Carraigheen", the flans were made by cooking "Irish Moss" (Irish Moss - Chondrus crispus) in milk. The name carrageenin, the ancient name of carrageenan, was first used in 1862 to designate the extract obtained from C. crispus, in reference to the name of the small Irish town [36]. The procedure for the extraction of carrageenans was described for the first time by Schmidt in 1844 [37]. The name was later changed to carrageenan to comply with the “-an” suffix for the names of polysaccharides.
The Irish moss has been used in industry since the 19th Century, in the clarification of beer [39]. The industrial extraction of carrageenan had its start in 1930 in New-England, from *Chondrus crispus* and *Mastocarpus stellatus* thalli, for the preparation of chocolate milk. The interruption of agar imports during World War II, led to its replacement by carrageenan. This situation was the starting point of a booming industry [40].

Fractionation of crude carrageenan extracts started in the early 1950s [41,42], resulting in the characterization of the different carrageenan types. A Greek prefix was introduced to identify the different carrageenans. In the same period, the molecular structure of carrageenans was determined [43,44]. The structure of 3,6-anhydro-D-galactose in kappa (κ) carrageenan, as well as the type of linkages between galactose and anhydrogalactose rings, was determined.

Today, the industrial manufacture of carrageenan is no longer limited to extraction from *C. crispus*, and numerous red seaweed species (Gigartinales, Rhodophyta) are used. For a long period of time, these seaweeds have been harvested from naturally occurring populations. Seaweed farming started almost 200 years ago in Japan. Scientific information about the seaweed life cycles allowed artificial seeding in the 1950s. Today, lots of seaweed *taxa* are cultivated, lowering the pressure on naturally occurring populations [45].

The modern industry of carrageenans dates from the 1940’s where it was found to be the ideal stabilizer for the suspension of cocoa in chocolate milk. In the last decades, due to its physical functional properties, such as gelling, thickening, emulsifying and stabilizing abilities, carrageenans have been employed in food industry to improve the texture of cottage cheese, puddings and dairy desserts, and in the manufacture of sausages, patties and low-fat hamburgers [7,9,37,46-48].

The most commonly used commercial carrageenans are extracted from *Kappaphycus alvarezii* and *Eucheuma denticulatum* [45]. Primarily wild-harvested genera such as *Chondrus*, *Furcellaria*, *Gigartina*, *Chondracanthus*, *Sarcothalia*, *Mazzaella*, *Iridaeae*, *Mastocarpus*, and *Tichocarpus* are also mainly cultivated as carrageenan raw materials, and producing countries include Argentina, Canada, Chile, Denmark, France, Japan, Mexico, Morocco, Portugal, North Korea, South Korea, Spain, Russia, and the US [8,10,47].

The carrageenan market is the largest of the seaweed-derived, food hydrocolloids markets and currently holds the fourth largest share (in $ value) of the wider global hydrocolloids market, behind gelatin, starch and pectin [49]. In 2014, the global hydrocolloids market was valued at US$ 5.4 Billion but projected to reach US$ 7.6 Billion by 2020 [50]. Industry estimates for 2015/2016 put a value of US$ 600-700 Million on the global carrageenan market with a projected average growth of ≈ 3% per year (Compound Annual Growth Rate - CAGR). Most recent market research predicted that the global market for carrageenan would approach US$ 1 Billion by 2024 [49,51].

Current industry estimates for the global production capacity of carrageenan range from about 70,000-80,000 dry MT per year [52] to over 110,000 MT per year [53]. CyberColloids’ (www.cybercolloids.net) estimate for current global usage, as based on end-sales data, is for 68,000 dry MT or approximately 80% of the estimated production capacity (Campbell and Hotchkiss 2017). Most of this carrageenan (≈ 90%) comes from species and strains of *Kappaphycus* and *Eucheuma* or “cottonii” and “spinosum” respectively as they were referred to historically and still are by the
industry. In 2016, CyberColloids estimated the global production of *Kappaphycus* for the carrageenan industry to be in the region of 1.5 Million wet MT or 200,000 dry MT [51] with most cultivation occurring in Indonesia and the Philippines. *Eucheuma* is not cultivated on such a large-scale as *Kappaphycus*, current estimates put production for the carrageenan industry in the range of 0.3 Million wet MT or 40,000 dry MT [51]. It must be noted that a substantial market for sea vegetables also exists which is not included in these estimates. The remainder of the carrageenan produced comes from cold-water species that are harvested mostly in South America, approximately 15,000 dry MT and from the dwindling remnants of a small, traditional N. Atlantic industry which produces only a few hundred dry MT annually from *Chondrus crispus* [54].

Main commercial carrageenans (Figure 2) are usually classified into κ (kappa), ι (iota), and λ (lambda) carrageenans [9].

![beta-carrageenan](image1)

(β) Beta-carrageenan

![kappa-carrageenan](image2)

(κ) Kappa-carrageenan

![iota-carrageenan](image3)

(ι) Iota-carrageenan

![lambda-carrageenan](image4)

(λ) Lambda-carrageenan

Figure 2 - Idealized structure of the chemical units of the main types of Carrageenan.

3.2. Biological activities of Carrageenans

From a human health perspective, it has been reported that carrageenans have antioxidant, anticancer, antihyperlipidemic, anticoagulant, immunomodulatory, antifungal, antiviral properties, gastric discomfort management, and digestive health support [55-65]. Carrageenans are also classically used as agents for the induction of experimental inflammation and inflammatory pain [66].

Previous studies conducted by Panlasigui et al. [67], and by Dumelod et al. [68], showed that carrageenan incorporated into common Philippine foods such as “fishballs” and “arroz caldo” has hypoglycemic effects in normal subjects. A study done on another seaweed extract showed that when incorporated into “puto”, “siomai” and a meal composed of rice and meatballs with sweet-and-sour sauce, agar had a glucose lowering effect in normal people [69]. The study conducted by Panlasigui et al. [57] indicates that regular inclusion of carrageenan in the diet may result in reduced blood cholesterol and lipid levels in human beings.

Historically, Irish Moss or Carrageen (*Chondrus crispus* and *Mastocarpus stellatus*) has many medical applications, some of which date from the 1830s. It is still used in Ireland to make traditional medicinal teas...
and cough medicines to combat colds, bronchitis, and chronic coughs. It is said to be particularly useful for dislodging mucus and has antiviral properties. Carrageenans are also used as suspension agents and stabilizers in other drugs, lotions and medicinal creams. Other medical applications are as an anticoagulant in blood products and for the treatment of bowel problems such as diarrhea, constipation and dysentery. They are also used to make internal poultices to control stomach ulcers [70-72].

Many reports exist of anticoagulant activity and inhibited platelet aggregation of carrageenan [73-77]. Among the carrageenan types, \(\lambda \)-carrageenan (primarily from \(C. \) crispus) has approximately twice the activity of unfractionated carrageenan and four times the activity of \(\kappa \)-carrageenan (\(Kappa phycus alvarezii \) – formerly \(Eucheuma cottoni \), and \(E. \) denticulatum – formerly \(E. \) spinosum). The most active carrageenan has approximately one fifteenth the activity of heparin [73], but the sulfated galactan from \(Grateloupia indica \) collected from Indian waters, exhibited anticoagulant activity as potent as heparin [78]. The principal basis of the anticoagulant activity of carrageenan appeared to be an antithrombotic property [73,74]. \(\lambda \)-carrageenan showed greater antithrombotic activity than \(\kappa \)-carrageenan, probably due to its higher sulfate content, whereas the activity of the unfractionated material remained between the two. It was found that toxicity of carrageenans depended on the molecular weight and not the sulfate content. Similar results were obtained with \(\lambda \)-carrageenan of \(Coccotylus brodiei \) (as \(Phyllophora brodiaei \)) which gave the highest blood anticoagulant activity. Carrageenan of \(Grateloupia turuturu \) also showed anticoagulant activity [78-80].

\(Chondrus ocellatus \) is distributed spontaneously in intertidal zone of the southeast seaside of China [59]. In ancient times the alga was not only edible, but was also used as a medicine to cure chronic constipation and bone fracture [81]. \(C. \) ocellatus is an important economic original alga that can produce carrageenan. Antitumor, antiviral, anticoagulant, and immunomodulatory activities of carrageenan have been found in this species, however, many evidences indicated that \(\lambda \)-carrageenan, which contained 1,4-linked D-galactose 2,6-disulfate units, and highly sulfated group, has more bioactivities than other carrageenan types [59,77,79].

Carrageenans extracted from several algae, i.e., \(Chondrus crispus \), \(Mastocarpus stellatus \), \(Kappaphycus alvarezii \), \(Eucheuma denticulatum \), \(Gigartinaeae \) and \(Phyllophoraceae \), enter cough medicines, toothpastes, lotions, sun ray filterers, shaving creams, shampoos, hair conditioners, and deodorants. More than 20% of carrageenan production is used in pharmacy and cosmetology. They are said to be invaluable for the manufacture of wash-removable creams and ointments. Excipients of algal origin are used in vanishing creams—the rapid evaporation of the emulsion’s aqueous phase on the skin leaves a thin protective medicated oily microfilm. Dried and pulverized \(Lithothamnium \) and \(Phymatolithon \) are used to make absorbent face and/or beauty masks [82,83].

Carrageenans are selective inhibitors of several enveloped and nonenveloped viruses and act predominantly by inhibiting the binding or internalization of virus into the host cells [84,85]. Carrageenans are exceptionally potent inhibitor of Human Papillomavirus (HPV) \textit{in vitro} by inhibiting the initial stage of infection [84]. Notably, they are also extremely effective against a range of sexually transmitted HPV types that lead to cervical cancer and genital warts [86,87]. Several \textit{in vitro} studies suggest that carrageenans may also have antiviral properties, inhibiting the replication of herpes and hepatitis A virus [86,88-90]. More recently, Schiller and coworkers demonstrated that carrageenan is an extremely potent infec-
tion inhibitor of a broad range of genital Human papillomaviruses (HPVs) and there are indications that carrageenan-based sexual lubricant gels may offer protection against HPV transmission [84,91,92].

The antimicrobial activities of numerous algae species have been tested and reported, presenting an extended spectrum of action against bacteria and fungi [93]. Carrageenans have proved to have effects against some bacterial strains such as Salmonella enteritidis, S. typhimurium, Vibrio mimicus, Aeromonas hydrophila, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. The growth of all the bacterial strains except L. monocytogenes was significantly inhibited by them, particularly by the t-carrageenan. A growth inhibition experiment using S. enteritidis showed that the inhibitory effect of the carrageenans was not bactericidal but bacteriostatic. Removal of the sulfate residues eliminated the bacteriostatic effect of t-carrageenan, suggesting that the sulfate residues in carrageenan play an essential role in this effect [94]. In 2014, Sebaaly et al. [95] reported that carrageenans isolated from the red alga Corallina sp. exhibited antibacterial activity against Staphylococcus epidermis. Infrared spectroscopy (FTIR) showed that the isolated carrageenan was of λ-type [95].

Researchers from the Population Council [96] (http://www.popcouncil.org/), a non-profit research organization in the USA, conducted a clinical trial investigating whether a carrageenan-based sexual lubricant was effective as a topical microbicide by blocking Human Immunodeficiency virus (HIV) infection in women. The study was conducted from March 2004–2007 in South Africa and enrolled more than 6000 volunteers. The results demonstrated that the experimental microbicide gel was safe for use but does not provide protection against HIV [61,62,96]. These results are consistent with in vitro assays since carrageenan was active against HIV only at concentrations about 1000 times higher than those required to inhibit Papillomaviruses [84]. However, carrageenans may serve as models for designing novel anti-HIV agents, improving their therapeutic properties through chemical modifications [97].

Carlucci and colleagues [98,99] found that λ-type carrageenan is active against the replication of HSV upon its firm interaction that leads to inactivation of HSV virion [98]. They also discovered that the λ-carrageenan and moderately cyclized μ-carrageenan isolated from Gigartina skottsbergii exert promising antiviral activities towards diverse strains of Herpes simplex virus HSV-1 and HSV-2, during virus attachment stage [90,99]. Surprisingly, similar results were reported by different group of researchers, who analyzed the chemical structure and antiviral activity of carrageenan (λ, κ, and ι) against HSV-2 infection [100,101]. The data obtained in the work of Soares [64] revealed that the viral infection by Lentivirus was reduced upon exposure to a pre-treatment with extracts from female gametophytes (FG) and tetratosporophytes (T) of Chondracanthus teedei var. lusitanicus. Although the inhibitions were not statistically significant, FG (producers of κ/ι hybrid carrageenan) and T (producers of ξ-carrageenan) of C. teedei var. lusitanicus extracts was able to reduce 14% of the virus infection, and the Tetra extract was able to reduce, approximately, 35% of the virus infection [64].

A recent in vitro study conducted by Grassauer and colleagues [85] reported the inhibitory effects of t-carrageenan against Human rhinovirus (HRV) proliferation by preventing the primary phases of virus replication. They have suggested that this effect is possibly attributed to the suppression of the allostéric activity of virus particles during their entry [85,102]. Additionally, t-carrageenan was proven to be effective against dengue virus replication in mosquito and mammalian cells; however, the mode
of antiviral action of t-carrageenan in both cell types was interestingly distinctive. In Vero cell line, the inhibitory activity has been exerted at early stage of virus adhesion probably due to some primary receptors, whereas in mosquito cell it affected the cell proliferation and protein synthesis [103,104].

Carrageenan from red marine algae is known to be also a potent inflammatory agent in rodents, primes mice leucocytes to produce tumor necrosis factor-α (TNF-α) in response to bacterial lipopolysaccharide [105]. Moreover, some types of carrageenans induce potent macrophage activation [106,107], while some carrageenans and fucoidan appear to inhibit macrophage functions [108,109]. However, sulfated polysaccharides may have potential biomedical applications in stimulating the immune system or in controlling macrophage activity to reduce associated negative effects [22].

Exposure of human (and other mammals) cells to ultraviolet (UV) light induces various deleterious responses. Damage to cells by UVA is thought to involve reactive oxygen species, including singlet oxygen, the superoxide and hydroxyl radicals, and hydrogen peroxide. Some of the major harmful effects are DNA damage, systemic immune suppression, and accelerated aging [110,111]. When thymic lymphocytes were exposed to a dose of 90 mJ/cm² UVA, their viability was decreased by about 60%. However, the viability of lymphocytes was significantly increased compared with the control group when carrageenan oligosaccharides and their derivatives were pre-administered to cells before UVA radiation. This phenomenon showed that carrageenan oligosaccharides and their derivatives can protect the lymphocytes against UVA injury. As like a H₂O₂ induced oxidative stress model, the chemical modification of carrageenan oligosaccharides also had no significant effect on their protective effect. So, the studies of Yuan et al. [112] suggest that carrageenan oligosaccharides and their derivatives show relevant antioxidant activity both in vitro and in a cell system.

According Sokolova et al. [113], antioxidant actions of λ-, ξ-, κ-, κ/β- and κ/ι-carrageenans against reactive oxygen/nitrogen species depend on polysaccharide concentration and such structural characteristics as presence of hydrophobic 3,6-anhydrogalactose unit, amount and position of sulfate groups, and an oxidant agent, on which sample antioxidant action is directed. The results of Sokova et al. [113] indicated that carrageenans possess antioxidant capacity in vitro, and this action notably depends on the structure of the polysaccharide itself than the reducing capacity of the polysaccharides.

Affording the works of Sokolova et al. [114], a carrageenan food supplement brings about the decrease in the level of cholesterol and low-density lipoprotein cholesterol, and the supplementation with carrageenans produces moderate modulation of all links of the immunity.

Until 1935, pneumonia was the leading recorded cause human death in the USA. 100 years ago, five of the top ten causes of death in men were respiratory diseases. Today, asthma is the leading cause of juvenile school absenteeism and is increasingly an affliction of adults. Red algae (carrageenophytes) containing carrageenan have been used for millennia as treatments for respiratory ailments, especially intractable sinus infections and lingering pneumonias. Asthma was not separated out as such in the old literature [115].

A recent in vivo study in mice has revealed that the low molecular weight carrageenans (3, 5, and 10 kDa), as well as acetylated and sulfated derivatives, have substantial inhibitory effects against influenza virus. Furthermore, the smallest κ-carrageenan with appropriate sulfation and acetylation degree
was the greatest antiviral candidate against influenza virus [116].

Acute viral upper respiratory tract infection, also known as common cold, is the most frequently observed infectious disease in human beings. Children get four to eight upper respiratory infections per year and adults suffer from two to four episodes per year [117]. In most of cases, common cold is caused by respiratory viruses such as rhinovirus, coronavirus, parainfluenza, influenza, respiratory syncytial virus, adenovirus, enterovirus and metapneumovirus [118-121]. According to the work of Koenighefer et al. [122], the administration of carrageenan nasal spray in children as well as in adults suffering from virus-confirmed common cold reduced duration of disease, increased viral clearance and reduced relapses of symptoms. Carrageenan nasal spray appeared as an effective treatment of common cold in children and adults [122-124].

A nasal spray containing t-carrageenan only, or together with “Zanamivir”, provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza A (H1N1) infected [125,126]. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and “Zanamivir” the likelihood to develop escape mutations against “Zanamivir” will be reduced. Both individual compounds can reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need [125,126].

Marine algae are prolific sources of sulfated polysaccharides, which may explain the low incidence of certain cancers in countries that traditionally consume marine food. Breast cancer is one of the most common types of non-skin cancer in females. In the study made by Murad et al. [127], extracted sulfated carrageenan, predominantly consisting of t-carrageenan extracted from the red alga Palisada perforata (as Laurencia papilloosa), has demonstrated potential cytotoxic activity against the MDA-MB-231 cancer cell line. These findings suggest that sulfated carrageenan may serve as a potential therapeutic agent to target breast cancer via prompting apoptosis [127].

λ-Carrageenan is a seaweed polysaccharide which has been generally used as pro-inflammatory agent in the basic research, however, how the immunomodulating activity of λ-carrageenan affects tumor microenvironment remains unknown. Luo et al. [128] found that intratumoral injection of λ-carrageenan could inhibit tumor growth in B16-F10 and 4T1 bearing mice and enhance tumor immune response by increasing the number of tumor-infiltrating M1 macrophages, DCs and more activated CD4+CD8+ T lymphocytes in spleen. In addition, λ-carrageenan could enhance the secretion of IL17A in spleen and significantly increase the level of TNF-α in tumor, most of which was secreted by infiltrating macrophages. Moreover, λ-carrageenan exhibited an efficient adjuvant effect in OVA-based preventative and therapeutic vaccine for cancer treatment, which significantly enhanced the production of anti-OVA antibody. The toxicity analysis suggested that λ-carrageenan was with a good safety profile. Thus, λ-carrageenan might be used both as a potent antitumor agent and an efficient adjuvant in cancer immunotherapy [128].
Carrageenans extracted from *Chondracanthus teedei* var. *lusitanicus* were studied in order to determine their potential antifungal activity [64,65]. FTIR-ATR and FT-Raman spectroscopic analysis confirmed the presence of a hybrid κ/ι-carrageenan belonging to the gametophyte phase and a hybrid ξ/θ-carrageenan in the tetrasporophyte phase [7,9,10,129]. κ/ι and ξ/θ-carrageenan induced the formation of swollen hyphal segments in *Alternaria infectoria*, upon exposure to 125 μg mL⁻¹ and 60 μg mL⁻¹, respectively. The observed phenotype was similar to those induced by antifungals targeting the fungal cell wall. When exposed to 87.5 μg mL⁻¹ of kappa/iota carrageenan, *Aspergillus fumigatus* hyphae became shortened and highly branched, a phenotype commonly observed in response to antifungals. These morphological alterations were associated with a decrease of the β-glucan content in *A. infectoria* after exposure to 150 μg mL⁻¹ of kappa/iota and to 100 μg mL⁻¹ of ξ/θ-carrageenan. On the other hand, the chitin cell wall content of *A. fumigatus* decreased significantly upon exposure to 150 μg mL⁻¹ of both extracts, which triggered an increase in the content of β-glucan. Overall, the present work shows that carrageenans extracted from *C. teedei* var. *lusitanicus* cause alterations on the *A. fumigatus* and *A. infectoria* cell walls, indicating a marked antifungal activity [64,65].

According the works of Azizi et al. [130], the slow silver (Ag) release, κ-carrageenan/silver nanoparticles (Ag-NPs) presented good antibacterial activities against *Staphylococcus aureus*, Methicillin resistant *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Escherichia coli* with maximum zones of inhibition 11 +/- 2 mm. Cytotoxicity study showed that the bio-nanocomposite hydrogels with non-toxic effect of concentration below 1000 μg/mL have great pharmacological potential and a suitable level of safety for use in the biological systems [130].

3.3. Agar

Agar is the Malay name for red algae, also called agar-agar and Kanten. It is an extract of red algae, sold in granular, powder form, as flakes or long strips. This colloid is widely used as a gelling agent and rarely eaten on its own. In its pure form, agar is a tasteless and odorless polysaccharide; which normally contains proteins, vitamins and minerals, as the red algae from which it is derived [83,131].

Kanten was discovered by accident. For more than a thousand years, the Japanese have eaten a dish called “Tokoroten”, which is prepared for the abolition of red algae *Gelidium amansii* (called in Japan as “Tengusa”), and then letting the mixture stiffen. At some point toward the end of the 17th Century, leftover “Tokoroten” away outside on a freezing cold day. When it was found later, it had become a dry, whitish solid [131,132].

Agar is light in color, semi-transparent, and very brittle when dry. When soaked it absorbs water and, in contrast to gelatin (prepared from animal origin), it must have allowed to swell up completely before the water is warmed to a temperature above its melting point of 85 °C. Agar can be used as a gelling agent as it cools [38,131].

Agar consists of a mixture of at least two polysaccharides, i.e. agarose and agarpectin [133]. Typically, agarose is the predominant fraction of agar (50-90%) [134,135] and the responsible for its gelling properties [135]. It consists of high molecular weight polysaccharides composed of repeating units of (1→3)-β-D-galactopyranosyl-(1→4)-3,6-anhydro-α-L-galactopyranose (Figure 3), although some variations can occur, depending on factors such as the species of seaweed, as well as environmental and seasonal conditions [133]. In turn, agarpectin is a less clearly defined, it is a more complex polysaccharide of lower molecular weight than agarose and it has...
thickening properties [38,133]. Its structure is essentially made up of alternating (1→3)-β-D-galactopyranose and of (1→4)-3,6-anhydro-α-L-galacto-pyranose residues [133,136].

The most important commercial agarophyte genera are Gelidium, Pterocladia, Gelidiella, and Gracilaria. Agar has also been found in species of Ceramium, Phyllophora, Ahnfeltia, Campylaephora, Acanthopholis, and Gracilariopsis [137].

Figure 3 – Idealized structure of the chemical units of Agar

3.4. Biological activities of Agar

Agar has been used as functional dietary fiber for diabetics in the health food market because of its non-nutritive nature. Nevertheless, its α-glucosidase inhibitory ability should also be considered for retarding the carbohydrate digestion. Some inhibitors with pseudo-saccharide structure including acarbose and 1-deoxynojirimycin have been used very successfully in controlling diseases such as diabetes, obesity or hyperlipemia [138,139].

Agar has medicinal or pharmaceutical industrial applications including use as suspending agent for radiological solutions (barium sulfate), as a bulk laxative as it gives a smooth and non-irritating hydrated bulk in the digestive tract, and as a formative ingredient for tablets and capsules to carry and release drugs. Pharmaceutical grade agar has a viscous consistency. In microbiology, agar is the medium of choice for culturing bacteria on solid substrate. Agar is also used in some molecular microbiology techniques to obtain DNA information [140]. More recently, agar was used in a newly-developed medium, i.e., combined deactivators-supplemented agar medium (CDSAM), to evaluate the viability of dermatophytes in skin scales [141]. The experimental data from this clinical study indicate that CDSAM was more useful than standard media in accurately evaluating the efficacy of antifungal drugs. Agar proportion method for drug susceptibility tests has been used since 1957 [142]. More recently, the test has been replaced by more rapid tests [143].

The possibility to use agar and agarose beads for sustained release of water soluble drugs has been investigated [144]. Agarose has a significantly lower sulfate content, better optical clarity and increased gel strength with respect to agar, but it is considerably more expensive [145]. Agar beads containing phenobarbital sodium as a water soluble and hypnotic drug were prepared [146]. The encapsulation procedure consists in dissolving the drug in a hot (around 70 °C) agar aqueous solution and then dropping the solution in a cold bath containing a non-solvent for agar (acetone or ethyl acetate). Agar beads instantaneously form by gelation. The results of dissolution and release studies indicated that agar beads could be useful for the preparation of sustained release dosage forms, although no many further studies have been developed [147].

Antitumor activity was found in an agar-type polysaccharide from cold water extraction of a Gracilaria species and hydrolysates of agar resulted in agaro-oligo-
Saccharides with activity against α-glucosidase and antioxidant ability [139,148]. It has also been reported that agar leads to decreases in the concentration of blood glucose and exerts an anti-aggregation effect on red blood cells [4]. It has as well employed as an anti-rheumatic agent for prolonged treatments, and in the stabilization of cholesterol solutions [149].

Several antitumor oligosaccharides (GSO) include sulfated disaccharide and neoagaro-tetraose have been discovered in the Delesseriaceae (Ceramiales, Rhodophyta) [150]. These oligosaccharides were prepared by spray dried and proved the physiological activity by reducing the number of revertant colonies of Salmonella typhimurium and mildly inhibiting angiogenesis on the chicken chorioallantoic membrane (CAM). GSO was assumed to have a desmutagenic activity and no harmful side effects such as blood coagulation of fibrinolysis. GSO with high safety owed various physiological activity, which is expected to apply in future food and medical supplies [151].

Agarose can be separated from the agar with a yield of 42%, and the agar content varied seasonally from 26% - 42% in Gelidium spp. in another experiment [152,153].

In recent years, versatile biological activities of agaro-oligosaccharides have been observed, and the structure and bioactivity relationship research also revealed that the functionality is directly correlated to the degree of polymerization. Agaro-oligosaccharides were hydrolytically obtained from agar using hydrochloric acid, citric acid, and cationic exchange resin (solid acid) [139]. Agaro-oligosaccharides have been reported to display antioxidant effects, such as inhibiting the production of lipid peroxide radicals and inhibiting the production of nitric oxide (NO) [139]. Agaro-oligosaccharides have also been shown to suppress the production of a pro-inflammatory cytokine and an enzyme associated with the production of nitric oxide [154].

Among therapeutics for liver diseases, protective drugs have been attracted more and more attentions, such as antioxidant prevention approaches. The in vitro and in vivo antioxidative activities of agarooligosaccharides with the model related with liver disease was tested by [155]. Agaro-oligosaccharides derived from red seaweed polysaccharide have been reported to possess antioxidant activity. Overall, the results of the study made by Chen and colleagues [155] indicate that agarooligosaccharides can exert their in vitro and in vivo hepatoprotective effect through scavenging oxidative damage induced by reactive oxygen species (ROS).

Agaro-oligosaccharides and neoagaro-oligosaccharides have been reported to possess lots of biological activities, such as antioxidative activities [156], moisturizing effect on skin [157], and anti-inflammation effects [158], which suggested that these oligosaccharides merit further investigation as functional foods to control inflammation. Neoagaro-oligosaccharides derived from agarose have been demonstrated to possess a variety of biological activities, such as antibacterial and antioxidative activities [159].

3.5. Porphyran

Porphyran is a sulfated polysaccharide isolated from selected (red) algae of the Order Bangiales, Phylum Rhodophyta, especially from the genus Porphyra/Pyropia [160,161]. The chemical structure of porphyran contains a linear backbone of alternating 3-linked β-D-galactose and 4-linked α-L-galactose-6-sulfate or 3,6-anhydro-α-L-galactose units (Figure 4) [79,162].
3.6. Biological activities of Porphyran

Non-starch polysaccharide (NSP) has been consumed for centuries and has been recognized as having nutritional benefits. Many reports have demonstrated that ingestion of NSP lowers serum cholesterol and lipoprotein levels [170-172], helps to normalize serum glucose and insulin levels [173] and promotes normal laxation [174]. Porphyran, which is considered an NSP, can be extracted with hot water from Porphyra/Pyropia spp. [161,175], edible species cultivated abundantly in eastern Asia. Porphyran is distributed in the intercellular matrix of the algal body and its basic structure is closely related to that of agar [176]. It has also been reported that porphyran also has health benefits as other NSPs: e.g., prebiotic activity [177], antitumor activity [178,179], and antihyperlipidemic activity [180]. The study in rats [180] suggested that dietary porphyran prevents hypercholesterolemia that is induced by feeding diet containing 1.5% cholesterol 0.5% bile salts. However, little is known about how dietary porphyran affects growth and lipid metabolism in the feeding of a normal diet [176].

Porphyran produces hypocholesterolemic and hypolipidemic effects due to reduced cholesterol absorption in the gut, with increased fecal cholesterol content and a hypoglycemic response. It is also reported to reduce total cholesterol, free cholesterol and the levels of triglycerides and phospholipids in the liver. These substances are likely to be exploited by “nutraceutical” companies that market them as “health products” [57,68,176,180-187].

Porphyran is effective against contact hypersensitivity induced by 2, 4, 6 tri-nitrochlorobenzene. The mechanism is suggested to operate by suppressing the serum levels of IgE and IFN-γ. Porphyran has excellent inhibitory activities against hyaluronidase, responsible for the release of histamine from mast cells [188].

Some sulfated polysaccharides from red algae also showed anti-viral activities towards viruses responsible for human infectious diseases. Porphyran is reported to inhibit HIV reverse transcriptase in vitro. It has minimal effects on human DNA and RNA polymerase activity. Some agaroids, such as high molecular weight, galactan sulfate also have antiviral properties against the Herpes simplex virus, human cytomegalovirus (HCMV), dengue virus (DENV), respiratory syncytial virus (RSV) and influenza virus due to the inhibition of the initial viral attachment to host cells [189-194].

Upon the intraperitoneal administration of porphyran to aging mice, the activities of superoxide dismutase and glutathione peroxidase as well as the total antioxidant capacity were increased significantly and the level of lipid peroxidation was significantly decreased, suggesting that porphyran has antioxidant activity both in vitro and in vivo [195].
In human gastric cancer cells, porphyran displays antitumor properties, in particular the ester sulfates of the polysaccharides may be related to the antitumor activities reported. The degree of polyanionic properties may be intimately related to this activity. Porphyran reportedly induced apoptosis by caspase-3 or caspase-9 activation, while decreasing the Insulin-like, growth Factor-I receptor (IGF-IR) phosphorylation and down regulated a serine/threonine kinase (Akt) phosphorylation. The caspase-induce apoptosis was activated in a sequential cascade of cleavages from their inactive forms. Activation of caspase-3 leads to the cleavage of many proteins, one of which is poly (ADP-ribose) polymerase (PARP) [196]. The cleavage of the poly (ADP-ribose) polymerase is the hallmark of apoptosis. The expression level of anti-apoptotic molecules, such as B-cell lymphoma 2 (Bcl-2), gradually decreased, whereas the pro-apoptotic molecule Bcl-2-associated death promoter (BAD), opposed the action of Bcl-2, which increased in response to levels of exposure porphyran. Porphyran decreased the expression levels in Gastric cancer cell lines (AGS) by negatively regulating the insulin-like, growth Factor-I receptor (IGF-IR) phosphorylation which is a potent mitogen and growth stimulatory factor for several kinds of cells (over-expression and enhanced activation of which is frequently observed in Human cancers) [196]. Thus, Insulin-like, growth Factor-I receptor (IGF-IR) phosphorylation was decreased in porphyran-treated AGS cells, which correlated with Akt activation. Porphyran down regulates Akt phosphorylation. The PI3- kinase/Akt pathway is viewed as a key player to cell survival in different systems. The IGF-I stimulation induced Akt activation decreased in cells treated with porphyran, which suggested that inhibition of Akt phosphorylation may be an important mechanism for porphyran-induced apoptosis [196,197]. Furthermore, polysaccharides prepared from Pyropia yezoensis (as Porphyra yezoensis) considerably inhibited human gastric and lung cancer cell growth, and degradation products of these polysaccharides resulting from an ultrasonic treatment significantly increased this antiproliferative effect against only human gastric cancer cells [198]. Porphyra/ Pyropia sp. also reportedly contains various anticancer compounds other than porphyrans [199-201]. In a human case-control study, it was reported that a high rate of intake of nori (Porphyra/Pyropia sp.) may decrease the risk of breast cancer [202].

Additionally, porphyrans reportedly improved lipid and glucose metabolism [203,204] and iron deficiency [205]. In the works of Wang et al. [206] the hypolipidemic and antioxidant effects of porphyran from the red algae Pyropia haitanensis (as Porphyra haitanensis) as a dietary supplement were evaluated in mice. The results suggested that porphyran could be used as functional foods and natural drugs in preventing the hyperlipidemia and this activity might be attributed to its antioxidant potential [206].

4. Polysaccharides from brown algae (Ochrophyta, Phaeophyceae)

4.1. Fucoidan

Fucans are sulfated polysaccharides which comprise a fucose backbone. One of the best studied fucans from the brown algae is fucoidan, which was first isolated by Kylin [207]. The fucoidan from Fucus vesiculosus has been available commercially for decades (Sigma-Aldrich Chemical Company, St. Louis, MO, US). Early work on its structure showed that it contained primarily (1→2) linked 4-O-sulfated fucopyranose residues (Figure 5). However, 3-linked fucose with 4-sulfated groups was subsequently reported to be present on some of
the fucose residues. Additionally, it was determined to contain branches every 2-3 fucose residues. Subsequently, Chevolot and colleagues reported that the fucoidan from *Fucus vesiculosus* and *Ascophyllum nodosum* contained a predominant disaccharide motif with sulfate at the 2-position of the 3-linked fucose and sulfate groups on the 2- and 3-positions of the 4-linked fucose [137,208].

![Figure 5 - Idealized structure of the chemical units of Fucoidan](image)

4.2. Biological activities of Fucoidan

Fucoidan can be easily “cooked” out of most edible brown algae by simmering for 20-40 min. in water. When consumed, it seemed to reduce the intensity of the inflammatory response and promote more rapid tissue healing after wound or surgical trauma. This led to recommendations that brown seaweed broth be administered after auto-collision, sports injuries, bruising falls, muscle and joint damage and deep tissue cuts, including surgery [209]. However, the commercial importance of fucoidans is presently much lower than that of seaweed hydrocolloids; these polysaccharides are now attracting considerable attention because of the growing market for them as “bioactive polysaccharides” in a wide arena of diverse applications [210]. More recently, anticoagulant and antithrombotic activities are amongst the most studied biological effects of fucoidans. Commonly, the anti-coagulant activity of fucoidans is mediated through the activation of thrombin inhibitors, although direct thrombin inhibition and competitive binding of fibrinogen to block the actions of thrombin are also possible [210-212].

Several studies reported that the anticoagulant functionalities of fucoidans extracted from *Fucus vesiculosus* and *Eklonia cava* were due to thrombin-inhibition-mediated via plasma anti-thrombin-III; their anti-coagulant activity was like that of heparin [13,213,214]. Moreover, fucoidans from *Ascophyllum nodosum, Fucus distichous, F. evanescens, F. serratus, Laminaria digitata, Saccharina latissima* and *S. longissima* were also described to possess strong anticoagulant activities both in vitro and in vivo models [213,214].

In general, structural-bioactive studies suggested that the anticoagulant /anti-thrombin activities of fucoidans were mainly dependent on the content and/or positioning of sulfate groups, as well as the molecular weight of the polymers [213]. Likewise, their monomeric composition, types of linkages and branching might also exert moderate modulation on the biological properties of fucoidans [13,210,215]. In this context, it is possible that the greater anticoagulant/antithrombin activities exhibited by longer fucoidans are due to the higher content of fucose and sulfate groups [13,209,213,215,216], though this is still under debate [3,217].
Fucoidans are also reported to inhibit the replication of several enveloped viruses such as Human immune-deficiency and human cytomegalovirus, among others [13,213]. The mechanisms for such activity are thought to occur via inhibition of cell infection by viral sorption, or hampering of viral-induced, syncytium formation [13,215]. Fucoidans from Saccharina japonica, Cladosiphon okamuranus, Adencystis utricularis, Stoechospermum marginatum, Cystoseira indica, Dictyota mertensii, Lobophora variegata, Fucus vesiculosus, Spatoglossum Schroederi and Undaria pinnatifida showed impressive, positive results in both in vitro and in vivo models of infection by poliovirus III, adenovirus III, ECHO6 virus, coxsackie B3 virus, coxsackie A16, Newcastle disease virus (NDV), Herpes simplex virus (HSV-1, HSV-2), HIV and avian reverse transcriptase [13,212,215].

Fucoidan isolated from the brown seaweed Fucus vesiculosus [218] shows inhibitory effect on the replication of DNA viruses: Herpes virus (HSV-1, HSV-2) and Human cytomegalovirus (HCMV) [218-220]. These compounds are also active against RNA viruses: Vesicular stomatitis virus (VSV), Sinbis virus (SINV), and HIV-1 [221]. However, this compound is not active against Coxackievirus, Poliovirus, and Parainfluenza virus. A water-soluble, non-carbohydrate component of fucoidan isolated from F. vesiculosus can inhibit HIV Reverse transcriptase (RT) in vitro at μg mL⁻¹ [220]. Pre-incubation of cell-free virus to 200 μg mL⁻¹ causes 100% reduction in the amount of HIV-1 p24 antigen released. Tests show that these effects are not due to the killing of target cells. In fact, fucoidan produced no adverse effects on cell proliferation and protein metabolism. The pre-incubation of target cells with fucoidan protects them from HIV-1 infection [220]. In addition to its antiviral activity, fucoidan possesses low anticoagulation properties [212,218-220,222].

Antitumor activities of fucoidans include the inhibition of tumor proliferation, the stimulation of tumor cell apoptosis, blocking of tumor cell metastasis and enhancement of various immune responses [223]. In this context, fucoidans from several macroalgal species (e.g. Saccharina japonica, S. latissima, Laminaria digitata, Fucus serratus, F. distichus and F. vesiculosus) proved to be useful and were regarded as good candidates for future cancer therapy [213,215]. Besides those, the commercial fucoidans branded “Tokida” (from cultured Cladosiphon okamuranus) and that from the Korean cultured sporophyte (Miyeok-gui) of U. pinnatifida also revealed promising antitumoral activities, as tested in in vitro models [215].

Other important, demonstrated biological activities of fucoidans included antioxidant, anti-inflammatory and anti-allergic, although others cannot be forgotten, e.g. hepatoprotection, cardio-protection, stomach protection and anti-obesity [13,213,215]. Examples of fucoidans showing promising antioxidant activities in in vitro models included those obtained from Saccharina japonica, Canistrocarpus cervicornis, Fucus vesiculosus, Dictyota cervicornis, Sargassum Filipendula and Dictyopteris delicata [13,213,215,224], while the anti-inflammatory activity of several fucoidans (Laminaria digitata, Fucus evanescens, F. serratus, F. distichus, F. spiralis, Ascophyllum nodosum, Cladosiphon okamuranus, Padina gymnospora and Saccharina latissima) have been described through inhibition of leucocyte recruitment, in an inflammation model in rats [225]. Moreover, inhibition of the expression of inducible nitric oxide synthase (iNOS) has also been demonstrated for fucoidans, such as that from the Sigma-Aldrich Chemical Co. (from F. vesiculosus). Furthermore, commercial fucoidans (from Mekabu and Sigma-Aldrich Chemical Co.) together with those isolated from A. nodosum, F. evanescens, C. okamuranus and from other several members
of the Order Laminariales (Phaeophyceae) were described to exhibit anti-complementary activities, rendering their potential as anti-allergen [13,121,213,215].

The sulfated and acetylated fucoidan fraction, containing fucose, galactose, mannose, glucose and uronic acid residues, was isolated from the brown alga Padina boryana [226]. The anticancer effect of native and modified fucoidan fractions was studied in vitro on the colorectal carcinoma cells DLD-1 and HCT-116. All fucoidans had no cytotoxicity under 400 μg/mL and inhibited colony formation of cancer cells at concentration of 200 μg/mL [226].

4.3. Laminaran

Laminarans are a category of small glucans present in either soluble or insoluble form. The first form is characterized by its complete solubility in cold water, while the other is only soluble in hot water [207,298]. This polysaccharide is composed of D-glucose with β-(1,3) linkages, with β-(1,6) intra-chain branching (Figure 6) [17,227-229]. Laminaran, also known as “laminarin” or “leucosin”, was first isolated from members of the Laminariaceae (Phaeophyceae) by Schmiedeberg [230]. Laminaran is a food reserve of brown algae. It is located in vacuoles present in cells. Laminaran is found in the fronds of Laminaria and Saccharina species [231].

Laminarans are basically a class of low-molecular weight storage β-glucans, which are composed of (1,3)-β-D-glucan [232]. They consist of (1,3)-β-D-glucopyranose residues with some 6-O-branching in the main chain and some β-(1,6)-intra-chain links are also present. For example, laminaran from Eisenia bicyclis is composed of a linear chain of (1,3) and (1,6) linkage in a ratio of 2:1 (1,3)-β-D-glucans [233]. The molecular weight of laminaran is approximately 5 kDa and is dependent upon the degree of polymerization which is in the range of 20-25 glucose moieties [234,235]. The molecular weight of laminaran from Saccharina longicruris is reported to be in the range of 2.89 - 3.32 kDa depending on the extraction conditions [236], including the solvent type used [228]. Not all laminarans are the same characteristics, different species of raw material present different structures of molecules, therefore different biological properties [228,229].

In nature, laminarins exist in either soluble or insoluble forms. The soluble form is characterized by complete solubility in cold water, and the insoluble form can be dissolved only in hot-water solutions. The solubility of laminarins is determined by the branching factor: laminarins with the highest branching are easily dissolved in cold water in comparison with laminarins with less branching. Moreover, the degree of polymerization of water-soluble laminarins is approximately 20-25 glucose units [236,237].
4.4. Biological activities of Laminaran

The laminaran prepared from kelp by water extraction were reported to be able to effectively inhibit the adsorption of HIV on lymphocytes and the activity of HIV reverse transcriptase at the concentration of 50 μg mL⁻¹, which suggest that laminaran polysaccharides possess good inhibitory effect on HIV replication [238].

Laminaran has many reported bioactivities such as anticancer, anti-inflammatory, anticoagulant, and antioxidant effects [227]. Studies on feeding of laminaran-containing foods to animals (pigs) indicate that laminarans hold promise as a functional ingredient in food applications [239].

Algae polysaccharides have numerous biological activities because they enhance macrophage immune responses [240]. Similarly, laminaran can be used to achieve the activation of macrophages leading to immune-stimulatory, antitumor and wound-healing activities [241,242]. Thus, it is also termed as a biological response modifier [243]. The biological activities of laminarans can be enhanced or modified using various techniques including irradiation, sulfation, reduction and oxidation. During irradiation, the molecular weight of the laminarans investigated was reported to be significantly reduced with the formation of carbonyl groups. This is suggested to lead to enhanced antioxidant activities.

Ermakova et al. [245] demonstrated that water-soluble laminaran isolated from Ecklonia bicyclis (as Eisenia bicyclis) has no cytotoxic effect on Human malignant melanoma (SK-MEL-28) and Human colorectal adenocarcinoma cells (DLD-1) after treatment for 24, 48, and 72 h (1-200 μg/mL). However, the authors reported that incubation of laminaran with these cancer cells significantly inhibits colony formation (for SK-MEL-28 Human melanoma cells by 32% and 42% respectively at 100 and 200 μg/mL). Usoltseva and co-workers [246] also researched the inhibitory effects of laminarans isolated from Alaria marginata and Alaria angusta on colony formation by 3 cancer cell lines: Human colon adenocarcinoma cells (HT-29), Human breast cancer cells (T47D), and Human malignant melanoma (SK-Mel-28). Laminaran concentrations less than 400 μg/mL were not toxic to the tested cancer cell lines. However, the authors found that at the concentration of 100 μg/mL, laminaran has an inhibitory effect on colony formation on HT-29 cells compared to the control group (A. angusta...
laminaran by 22% and A. marginata laminaran by 6%). In addition to these significant results, the authors reported that modifications of laminarans (deacetylation and desulfation) cause a loss of the anticancer activity under the tested conditions [237].

Ji and Ji [247] studied the anticancer effect of commercial laminaran on human colorectal adenocarcinoma (LoVo) cells. Their results revealed that incubation of cancer cells with laminaran (400-1600 μg/mL) for 72 h induces apoptosis in LoVo cells. Additionally, Ji et al. [248] studied anticancer activity of laminaran after modifying the sulfate content of laminaran by the chlorosulfonic-acid-pyridine method. The authors compared the anticancer effects of normal and modified laminaran on LoVo cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. At the concentration of 1600 μg/mL, modified laminaran could reduce the number of LoVo cells by 86%. However, at the same concentration, unmodified laminaran could reduce the cancer cell number by only 38%. Thus, the authors proposed that sulfation of the structure might increase bioactivities of laminaran [248].

In the works of Malyarenko et al. [249], the laminarans from brown seaweeds Saccharina cichorioides, Saccharina japonica, and Fucus evanescens were isolated and their sulfated derivatives were tested. The latter inhibited proliferation, colony formation, and migration of human colorectal adenocarcinoma, melanoma, and breast adenocarcinoma cells in different manners. The sulfated laminaran from F. evanescens possessed the highest anticancer activity in vitro and effectively prevented migration of breast adenocarcinoma cells by inhibiting of the Matrix Metalloproteinases 2 and 9 activity [249].

The effect of laminaran and fucoidan extracted from Dictyota dichotoma (40 μg/mL) on colony formation of colorectal adenocarcinoma (DLD-1) cancer cells after irradiation (4 Gy) showed a synergistic effect with X-ray irradiation against cancer cells, decreasing the amount and size of cancer cells colonies [250].

4.5. Alginites

“Alginate” is the term usually used for the salts of alginic acid, but it can also refer to all the derivatives of alginic acid and alginic acid itself; in some publications the term “algin” is used instead of alginate. Chemically, alginites (Figure 7) are linear copolymers of β-D-mannuronic acid (M) and α-L-guluronic acid (G) (1-4)-linked residues, arranged either in heteropolymeric (MG) and/or homopolymeric (M or G) blocks [251-253].

Alginic acid was discovered in 1883 by E.C.C. Stanford, a British pharmacist who called it algin. Alginic acid is extracted as a mixed salt of sodium and/or potassium, calcium and magnesium. Since Stanford discovered algin, the name has been applied to a number of substances, e.g. alginic acid and all alginites, derived from alginic acid. The extraction process is based on the conversion of an insoluble mixture of alginic acid salts of the cell wall in a soluble salt (alginate) which is appropriate for the water extraction [254,255]. Alginic acid is present in the cell walls of brown seaweeds, where it is partially responsible for their flexibility [256].

While any brown seaweed could be used as a source of alginate, the actual chemical structure of the alginate varies from one genus to another, and similar variability is found in the properties of the alginate that is extracted from the seaweed. Since the main applications of alginate are in thickening aqueous solutions and forming gels, its quality is judged on how well it performs in these uses [256].
25 to 30 years ago almost all extraction of alginates took place in Europe, USA, and Japan. The major change in the alginates industry over the last decade has been the emergence of producers in China in the 1980s. Initially, production was limited to low cost, low quality alginate for the internal, industrial markets produced from the locally cultivated *Saccharina japonica*. By the 1990s, Chinese producers were competing in western industrial markets to sell alginates, primarily based on low [38,257].

A high-quality alginate forms strong gels and gives thick, aqueous solutions. A good raw material for alginate extraction should also give a high yield of alginate. Brown seaweeds that fulfill the above criteria are species of *Ascophyllum, Durvillaea, Ecklonia, Fucus, Laminaria, Lessonia, Macrocystis* and *Sargassum*. However, *Sargassum* is only used when nothing else is available: its alginate is usually borderline quality and the yield usually low [258].

The goal of the extraction process is to obtain dry, powdered, sodium alginate. The calcium and magnesium salts do not dissolve in water; the sodium salt does. The rationale behind the extraction of alginate from the seaweed is to convert all the alginate salts to the sodium salt, dissolve this in water, and remove the seaweed residue by filtration [256].

Water-in-oil emulsions such as mayonnaise and salad dressings are less likely to separate into their original oil and water phases if thickened with alginate. Sodium alginate is not useful when the emulsion is acidic, because insoluble alginic acid forms; for these applications propylene glycol alginate (PGA) is used since this is stable in mild acid conditions. Alginate improves the texture, body and sheen of yoghurt, but PGA is also used in the stabilization of milk proteins under acidic conditions, as found in some yoghurts. Some fruit drinks have fruit pulp added and it is preferable to keep this in suspension; addition of sodium alginate, or PGA in acidic conditions, can prevent sedimentation of the pulp and to create foams. In chocolate milk, the cocoa can be kept in suspension by an alginate/phosphate mixture, although in this application it faces strong competition from carrageenan. Small amounts of alginate can thicken and stabilize whipped cream [135,259].

Alginates have several commercial applications based on their thickening, gelling, emulsifier and stabilizing abilities. They are used in the food industry for improving the textural quality of numerous products such as salad dressing, ice-cream, beer, jelly and lactic drinks, but also in cosmetics, pharmaceuticals, textiles and painting industries [5,38,260].

Figure 7 - Idealized structure of the chemical units of alginic acid
4.5. Biological activities of Alginates

Alginates have anticancer properties [5,147,261] and a bioactive food additive “Detoxal”, containing calcium alginate, has anti-toxic effects on hepatitis. This drug decreases the content of lipid peroxidation products and normalizes the concentrations of lipids and glycogen in the liver [71,262].

Alginates have been mostly used marine derived polymers in the preparation of drug delivery particles with the shape of spheres of different sizes [263]. Alginate instantaneously forms gel-spheres at pH > 6 by ionotropic gelation with divalent cations such as Ca\(^{2+}\) [264], Ba\(^{2+}\), or Zn\(^{2+}\) and for this it is widely used for microencapsulation of drugs. On the other hand, at low pH, hydration of alginic acid leads to the formation of a high-viscosity “acid gel”. The ability of alginate to form two types of gel dependent on pH, i.e., an acid gel and an ionotropic gel, gives the polymer unique properties compared to neutral macromolecules, and it can be tailor-made for many applications [147].

The microencapsulation technique has been developed particularly for the oral delivery of proteins, as they are quickly denatured and degraded in the hostile environment of the stomach. The protein is encapsulated in a core material that, in turn, is coated with a biocompatible, semi permeable membrane, which controls the release rate of the protein while protecting it from biodegradation. Due to its mild gelation conditions at neutral pH, alginate gel can act as core material in this application, while poly(ethylene glycol) (PEG), which exhibits properties such as protein resistance, low toxicity and immunogenicity [265], together with the ability of preserving the biological properties of proteins [266,267], can act as a coating membrane. A chitosan/PEG-alginate microencapsulation process [268], applied to biological macromolecules such as albumin or hirudin [269], was reported to be a good candidate for oral delivery of bioactive peptides.

Several examples of alginate-encapsulated drugs, other than proteins, can also be found in literature. Qurrat-ul-Ain et al. [270] reported that alginate microparticles showed better drug bioavailability and reduction of systemic side effects compared with free drugs in the treatment of tuberculosis. Polyelectrolyte coating of alginate microspheres showed to be a promising tool to achieve release systems characterized by approximately zero-order release kinetics, release up to 100% of entrapped drug (dexamethasone) within 1 month, and improved biocompatibility [271]. Composites technology has been applied to alginate for drug delivery purposes. As an example, montmorillonite-alginate nanocomposites have been recently proposed as a system for sustained release of B\(_1\) and B\(_6\) vitamins [272]. The vitamins intercalated in the nanocrystals of the inorganic phase, and successively the hybrid B\(_1\)/B\(_6\) montmorillonite (MMT) is further used for the synthesis of B\(_1\)/B\(_6\)-MMT-alginate nanocomposite.

In their simplest design, oral controlled-release dosage forms made from alginates are monolithic tablets in which the drug is homogeneously dispersed. Drug release is controlled by the formation of a hydrated viscous layer around the tablet, which acts as a diffusional barrier to drug diffusion and water penetration. Water soluble drugs are mainly released by diffusion of dissolved drug molecules across the gel layer, while poorly soluble drugs are mainly released by erosion mechanisms. Modulation of drug release rate has been achieved by incorporating pH-independent hydrocolloids gel-
Alginates have been extensively used to modify the performances of other polysaccharides, such as chitosan, through the realization of alginate coated chitosan microspheres [277]. In the literature, it is also possible to find acrylic modified polysaccharides developed with the aim to obtain a finer control over release rate or to improve adhesive properties [278,279].

Due to the large variety of possible chemical compositions and molecular weights of alginate preparations resulted in different effects on biological systems. A biological effect of alginate initially was hinted at in the transplantation trails of encapsulated Langerhans islets for diabetes control. Over growth of alginate capsule by phagocytes and fibroblasts resembling foreign body/inflammatory reaction was reported. The main hurdles to the widespread use of islet transplantation for the treatment of type 1 diabetes continue to be the insufficient number of appropriate donors and the need for immunosuppression. Microencapsulation has been proposed to protect transplanted islets from the host’s immune system. The study made by Qi et al. [280] investigated the function of human pancreatic islets encapsulated in Ca$^{2+}$/Ba$^{2+}$ alginate micro beads intraperitoneally transplanted in diabetic Balb/c mice and concluded that The Ca$^{2+}$/Ba$^{2+}$ alginate microbeads can protect human islets from xenogeneic rejection in immune competent mice without immunosuppression. However, grafts ultimately failed likely secondary to a macrophage-mediated foreign body reaction [281].

Alginates have been extensively used to modify the performances of other polysaccharides, such as chitosan, through the realization of alginate coated chitosan microspheres [277]. In the literature, it is also possible to find acrylic modified polysaccharides developed with the aim to obtain a finer control over release rate or to improve adhesive properties [278,279].

Due to the large variety of possible chemical compositions and molecular weights of alginate preparations resulted in different effects on biological systems. A biological effect of alginate initially was hinted at in the transplantation trails of encapsulated Langerhans islets for diabetes control. Over growth of alginate capsule by phagocytes and fibroblasts resembling foreign body/inflammatory reaction was reported. The main hurdles to the widespread use of islet transplantation for the treatment of type 1 diabetes continue to be the insufficient number of appropriate donors and the need for immunosuppression. Microencapsulation has been proposed to protect transplanted islets from the host’s immune system. The study made by Qi et al. [280] investigated the function of human pancreatic islets encapsulated in Ca$^{2+}$/Ba$^{2+}$ alginate micro beads intraperitoneally transplanted in diabetic Balb/c mice and concluded that The Ca$^{2+}$/Ba$^{2+}$ alginate microbeads can protect human islets from xenogeneic rejection in immune competent mice without immunosuppression. However, grafts ultimately failed likely secondary to a macrophage-mediated foreign body reaction [281].

Alginates have been extensively used to modify the performances of other polysaccharides, such as chitosan, through the realization of alginate coated chitosan microspheres [277]. In the literature, it is also possible to find acrylic modified polysaccharides developed with the aim to obtain a finer control over release rate or to improve adhesive properties [278,279].

Due to the large variety of possible chemical compositions and molecular weights of alginate preparations resulted in different effects on biological systems. A biological effect of alginate initially was hinted at in the transplantation trails of encapsulated Langerhans islets for diabetes control. Over growth of alginate capsule by phagocytes and fibroblasts resembling foreign body/inflammatory reaction was reported. The main hurdles to the widespread use of islet transplantation for the treatment of type 1 diabetes continue to be the insufficient number of appropriate donors and the need for immunosuppression. Microencapsulation has been proposed to protect transplanted islets from the host’s immune system. The study made by Qi et al. [280] investigated the function of human pancreatic islets encapsulated in Ca$^{2+}$/Ba$^{2+}$ alginate micro beads intraperitoneally transplanted in diabetic Balb/c mice and concluded that The Ca$^{2+}$/Ba$^{2+}$ alginate microbeads can protect human islets from xenogeneic rejection in immune competent mice without immunosuppression. However, grafts ultimately failed likely secondary to a macrophage-mediated foreign body reaction [281].

Alginates have been extensively used to modify the performances of other polysaccharides, such as chitosan, through the realization of alginate coated chitosan microspheres [277]. In the literature, it is also possible to find acrylic modified polysaccharides developed with the aim to obtain a finer control over release rate or to improve adhesive properties [278,279].

Due to the large variety of possible chemical compositions and molecular weights of alginate preparations resulted in different effects on biological systems. A biological effect of alginate initially was hinted at in the transplantation trails of encapsulated Langerhans islets for diabetes control. Over growth of alginate capsule by phagocytes and fibroblasts resembling foreign body/inflammatory reaction was reported. The main hurdles to the widespread use of islet transplantation for the treatment of type 1 diabetes continue to be the insufficient number of appropriate donors and the need for immunosuppression. Microencapsulation has been proposed to protect transplanted islets from the host’s immune system. The study made by Qi et al. [280] investigated the function of human pancreatic islets encapsulated in Ca$^{2+}$/Ba$^{2+}$ alginate micro beads intraperitoneally transplanted in diabetic Balb/c mice and concluded that The Ca$^{2+}$/Ba$^{2+}$ alginate microbeads can protect human islets from xenogeneic rejection in immune competent mice without immunosuppression. However, grafts ultimately failed likely secondary to a macrophage-mediated foreign body reaction [281].

Alginates have been extensively used to modify the performances of other polysaccharides, such as chitosan, through the realization of alginate coated chitosan microspheres [277]. In the literature, it is also possible to find acrylic modified polysaccharides developed with the aim to obtain a finer control over release rate or to improve adhesive properties [278,279].

Due to the large variety of possible chemical compositions and molecular weights of alginate preparations resulted in different effects on biological systems. A biological effect of alginate initially was hinted at in the transplantation trails of encapsulated Langerhans islets for diabetes control. Over growth of alginate capsule by phagocytes and fibroblasts resembling foreign body/inflammatory reaction was reported. The main hurdles to the widespread use of islet transplantation for the treatment of type 1 diabetes continue to be the insufficient number of appropriate donors and the need for immunosuppression. Microencapsulation has been proposed to protect transplanted islets from the host’s immune system. The study made by Qi et al. [280] investigated the function of human pancreatic islets encapsulated in Ca$^{2+}$/Ba$^{2+}$ alginate micro beads intraperitoneally transplanted in diabetic Balb/c mice and concluded that The Ca$^{2+}$/Ba$^{2+}$ alginate microbeads can protect human islets from xenogeneic rejection in immune competent mice without immunosuppression. However, grafts ultimately failed likely secondary to a macrophage-mediated foreign body reaction [281].
showed high level osteo-differentiation and adipo-differentiation [32,287].

Alginates, fucoidans and laminaran have also antibacterial effect. Extracts were tested against nine bacteria, including *Escherichia coli*, *Salmonella*, *Staphylococcus* and *Listeria*. They appeared to be effective against *E. coli* and *Staphylococcus*. Sodium alginate seemed to demonstrate a strong antibacterial element. It not only binds but also kills the bacteria. Studies conducted on seaweed extracts found that fucoidan appeared to function as a good prebiotic (a substance that encourages the growth of beneficial bacteria in the intestines). An anti-inflammatory effect from some of the extracts has also been found, and so far, no toxic effects have emerged in use for human health [281,288,289].

A prominent marine polysaccharide drug named “911” derived from alginate polysaccharide exhibited promising activity against Human Immunodeficiency virus (HIV-1) at both chronic infection of Human Cutaneous T lymphocyte (H9) cells and acute infection of Human Tcell leukemia (MT4) cells in vitro and in vivo [102]. These special effects revealed that “911” drug inhibited the viral replication of HIV via significantly decrementing the activity of reverse transcriptase (RTase), discontinuing the virus adsorption, and improving the defense mechanisms of the host cells [290-292]. Alternative inhibitory result was also reported later for hepatitis B virus (HBV) that “911” drug could inhibit the virus replication by suppressing the activity of DNA polymerase activity [293]. Wang and colleagues discovered that the sulfated polymannuroguluronate (SPMG) [294], the sulfated form of alginate, is a characteristic anti-AIDS drug candidate, as it caused the inhibition of HIV-1 infection mainly through the robust attachment of virus gp120 protein with CD4 (the cluster of differentiation 4 is a glycoprotein found on the surface of immune cells such as T helper cells, monocytes, macrophages, and dendritic cells) molecules on the surface of lymphocyte (T) cells. Furthermore, there is huge correlation between the size of the sulfated SPMG oligosaccharides and their inhibitory significance that the octasaccharide will be the minimal active fragment preventing syncytium formation and reducing the p24 core antigen level in HIV-IIB-infected CEM cells (a cell line derived from human T cells) [295,296].

Moreover, alginates with molecular weights greater than or equal to 50 kDa could prevent obesity, hypcholesterolemia and diabetes [281,297-300]. Clinical observations of volunteers who were 25-30% overweight showed that alginate, a drug containing alginic acid, significantly decreased body weight [301,302]. Cooking into the bread does not reduce the molecular size of the alginate or affect its inhibition properties. These data demonstrate the robustness of alginates lipase inhibition despite the cooking process and digestion. Therefore, adding alginate to a bread vehicle may have the potential in the treatment for obesity [303]. In type II diabetes treatment, taking 5 g of sodium alginate, every morning was found to prevent a postprandial increase of glucose, insulin, and C-peptide levels and slowed down gastric transit [304]. Meal supplemented with 5% Kelp alginates decreased glucose absorption balance over 8 h in pigs. Similar studies have been done on rats and humans [305,306].

Another health effect is that the binding property of alginic acid to divalent metallic ions is correlated to the degree of the gelation or precipitation in the range of Ba<Pb<Cu<Sr Cd<Ca>Zn<Ni<Co<Mn<Fe<Mg. No intestinal enzymes can digest alginic acid. This means that heavy metals taken into the human body are gelated or rendered insoluble by alginic acid in the intestines and cannot be absorbed into the body tissue [307]. In several countries such as the Germany, Japan, Belgium, USA and
Canada, the use of alginic acid and its derivatives for the treatment of gastritis and gastroduodenal ulcers, as well as the use of alginites as anti-ulcer remedies, is protected by patents [3,281,308-310]. Several products of alginate containing drugs have been shown to effectively suppress postprandial (after eating) and acidic refluxes, binding of bile acids and duodenal ulcers in humans [310]. Examples are “Gaviscon” (sodium alginate, sodium bicarbonate, and calcium carbonate), “Algitec” (sodium alginate and cimetidine, an H2 antagonist) and “Gastralin” (alginic acid, sodium alginate, aluminum hydroxide, magnesium hydroxide and calcium carbonate) [262,281,311-313]. Clinical trials showed that sodium alginate promotes regeneration of the mucous membrane in the stomach, suppresses inflammation, eradicates colonies of Helicobacter pylori in the mucous membrane and normalizes non-specific resistance of the latter in 4 to 15-year-old children. It also promotes restoration of the intestinal biocenosis [71,281,314]. Other studies show positive dietary effects of alginites on fecal microbial fauna, changes in concentrations of compounds and acids, and prebiotic properties that can promote health [71,315, 316].

A study conducted by Zaharudin et al. [317] investigated the potential of dried edible seaweed extracts and alginites for α-amylase inhibitory effects. Alginites found in Laminaria digitata and Undaria pinnatifida (Phaeophyceae) appeared to be potent inhibitors of α-amylase activity with an IC$_{50}$ of (0.075 +/- 0.010-0.103 +/- 0.017) mg/mL, also a mixed-type inhibition. Overall, the findings provide information that crude extracts of brown edible seaweeds, phenolic compounds and alginites are potent α-amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycemia [317].

4.6. Ascophyllan

Ascophyllan isolated from the brown alga Ascophyllum nodosum (Phaeophyceae) is a fucose-containing sulfated polysaccharide, which has similar but distinct characteristic monosaccharide composition and entire chemical structure to fucoidan [322]. Ascophyllan (xylofucoglycuronan) has similar but obviously distinct composition characteristics from those of fucoidans isolated from A. nodosum and Fucus vesiculosus [323,324]. Specifically, ascophyllan has fucose and xylose in about equimolecular proportion, whereas fucoidans have much higher ratio of fucose than of xylose. The sulfate levels of ascophyllan and fucoidans isolated from A. nodosum and F. vesiculosus were 9.6, 19.4, and 22.6%, respectively [325]. In addition, the apparent molecular mass of ascophyllan estimated by gel filtration chromatography was about 390 kDa, which is much higher than that of fucoidan [326].

4.7. Biological activities of Ascophyllan

Mohsin et al. [318] characterize and evaluate the antioxidant activity of a sulfated polysaccharide ascophyllan isolated from marine brown algae Padina tetrastromatica. The results showed that one of the ascophyllan fractions showed stronger free-radical-scavenging abilities and had good antioxidant effect. Available data obtained by in vitro models suggest that there is a correlation between the sulfate content and antioxidant activity.

In work carried out by Jiang et al. [319], ascophyllan and crude extract administered via the oral route showed greater antitumor effects than via IP (Intraperitoneal) route, and the tumor sizes in mice treated with ascophyllan and crude extract were reduced by a mean of 68.7% and 42.4% by the oral route, and 41.4% and 13.6% by IP route compared to control mice. Splenic natural
killer cell activity in the mice treated with ascophyllan and crude extract by IP route was significantly enhanced, while only a slight increase of this activity was observed in orally-treated mice. Furthermore, increase in spleen weight of tumor-bearing mice was slightly suppressed by oral administration of ascophyllan, whereas IP administration resulted in further enlargement. Analysis of serum cytokines revealed that oral treatment with ascophyllan resulted in significant increase of tumor necrosis factor-α and interleukin-12 levels. Since ascophyllan showed no direct cytotoxic effect on sarcoma-180 cells, orally-administered ascophyllan is suggested to exhibit its antitumor activity through the activation of the host immune system [319].

Zhang et al. [320] investigated the effect of ascophyllan, a sulfated polysaccharide purified from Ascophyllum nodosum, on the maturation of mouse dendritic cells (DCs) in vitro and in vivo. Ascophyllan induced up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in bone marrow-derived DCs (BMDCs). Interestingly, ascophyllan induced a higher degree of co-stimulatory molecule up-regulation and pro-inflammatory cytokine production than fucoidan, a marine-derived polysaccharide with well-defined effect for promoting DCs maturation. Ascophyllan also promoted the generation of IFNγ (Interferon gamma)-producing Th1 (murine type 1 helper T cells) and Tc1 (Type 1 cytotoxic T lymphocytes) cells in the presence of DCs in an IL-12-dependent manner. Finally, myeloid differentiation primary response 88 (MyD88) signaling pathway was essential for DCs maturation induced by ascophyllan. Taken together, these results demonstrate that ascophyllan induces DCs maturation, and consequently enhances Th1 and Tc1 responses in vivo. This knowledge could facilitate the development of novel therapeutic strategies to combat infectious diseases and cancer [320,329].

Later, the same team [321] evaluated ascophyllan as an adjuvant for its therapeutic and preventive effect on tumor in a mouse melanoma model. Ascophyllan induced migration of DCs to spleen and tumor-draining lymph node (drLN) in a mouse B16 melanoma model. Moreover, ascophyllan induced activation of dendritic cells (DCs), and promoted IFN-γ- and TNF-α-producing murine type 1 helper T cells (Th1) immune responses in tumor-bearing mice. In addition, treatment with a combination of ascophyllan and ovalbumin (OVA) in the tumor-bearing mice promoted proliferation of OVA-specific CD4 and CD8 T cells and migration of those cells into the tumor, consequently inhibiting the tumor growth. Immunization with the combination of ascophyllan and OVA caused enhanced OVA-specific antibody production and memory T cell responses compared to OVA immunization alone, and almost completely prevented B16-OVA tumor growth upon subsequent tumor challenge. Lastly, the combination of ascophyllan and OVA prevented B16-OVA tumor invasion and metastasis into the liver. Therefore, these results demonstrate that ascophyllan can function as an adjuvant to induce DCs activation, antigen specific cytotoxic T lymphocyte (CTL) activation, Th1 immune response and antibody production, and hence may be useful as a therapeutic and preventive tumor vaccine [321].

5. Conclusion

Currently, seaweeds are used in many countries for very different purposes. Most of macroalgae are used directly for human consumption, while the remaining portion is used for industrial exploitation of macroalgae derived products, among which polysaccharides have many uses. The polysaccharides produced by the marine macroalgae have varied bioactivities, in which they stand out the antioxidant, anticoagulant, antithrombotic, antitumor, anti-inflammation...
tory, antiviral, antiprotozoal, and other activities [329]. Among the various bioactivities listed in this review, polysaccharides may be used as potential ingredients in future pharmaceutical products.

Acknowledgements

This work had the support of Fundação para a Ciência e Tecnologia (FCT), through the strategic project UID/MAR/04292/2013 granted to MARE. This work had the support from the European Structural & Investment Funds through the COMPETE Programme and from National Funds through FCT – Fundação para a Ciência e a Tecnologia under the Programme grant SAICTPAC/0019/2015. This work is also co-financed by the European Regional Development Fund through the Interreg Atlantic Area Programme, under the project NASPA.

References

activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. *International Immunopharmacology, 2007*, 7, 879-888.

50. Markets and Markets. Hydrocolloids Market Global Forecast by Type (Gelatin, Xanthan, Carrageenan, Alginates, Agar, Pectin, Guar, Locust Bean, Gum Arabic, and CMC), Function (Thickener, Stabilizer,

89. Marchetti M, Pisani S, Pietropalo V, Seganti L, Nicoletti R, Orsi N. Inhibition of *Herpes simplex* virus

101. De SF-Tischer PC, Talarico LB, Noseda MD, Guimarães SMPB,

173. Haack VS, Chesters JG, Vollendorf NW, Story JA, Marlett JA. Increasing amounts of dietary fiber provided by foods normalizes physi-

211. Kuznetsova TA, Besednova NN, Mamaev AN, Momot AP, Shevchenko NM, Zvyagintseva TN. Anticoagulant activity of fucoidan from brown algae *Fucus evanescens* of the Okhotsk Sea. *Bulletin of Exper-

antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. *Glycobiology*, **2007**, **17**(5), 541-552.

238. Muto S, Niimura K, Oohara M, Oguchi Y, Matsunaga K, Hirose K, Kakuchi J, Sugita N, Furusho T. Polysaccharides from marine algae and antiviral drugs containing the same

266. Han DK, Park KD, Ahn KD, Jeong SY, Kim YH. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyure-

279. Shojaei AH, Paulson J, Honary S. Evaluation of poly(acrylic acid-co-

292. Xianliang X, Meiyu G, Huashi G, Zelin L. Study on the mechanism of

301. Zee S. Body weight loss with the aid of alginic acid. Archives of Internal Medicine, 1991, 3-4, 113-114.

305. Vaugelade P, Hoebler C, Bernard F, Guillen F, Lahaye M, Duee PH, Darcy-Vrillon B. Non-starch polysaccharides extracted from seaweed can modulate intestinal absorption

