Catalytic performance and room temperature ferromagnetism of TiO2 doped with non-metallic elements

Main Article Content

Yarong Lu Mamatrishat Mamat Hoernisa Iminniyaz Yasenjan Ghupur Fuerkaiti Xiaerding Abduleziz Ablat Rong Wu

Abstract

Titanium dioxide (TiO2) is regarded as one of the important semiconductor materials for the wide applications in the field of the solar water splitting, sewage disposal and spin electronics and so on. Therefore, doping with proper elements to improve and extend its scope of applications has become the focus of recent research fields. Comparatively speaking, the nonmetal elements can improve the performance of TiO2 by reducing the band gap, improving the light absorbing capacity, and reducing the electron and hole recombination rates. In this paper, we mainly summarize the change of room temperature ferromagnetism and catalytic performance of TiO2 doped with nonmetal elements via various preparation techniques. The review may contribute to the further studying and wider application of TiO2.

Article Details

How to Cite
LU, Yarong et al. Catalytic performance and room temperature ferromagnetism of TiO2 doped with non-metallic elements. Quarterly Physics Review, [S.l.], v. 3, n. 2, july 2017. Available at: <http://journals.ke-i.org/index.php/qpr/article/view/1336>. Date accessed: 19 sep. 2017.
Section
Articles

References

References

[1]. Fujishima A, Honda K. Nature. 238(1972):37–38.
[2]. Kulkarni J S, Kazakova O, Holmes J D. Applied Physics A. 85(2006):277-286.
[3]. Zhao Y, Feng P, Hui L, et al. Journal of Physical Chemistry C. 117(2013):21718-21723.
[4]. Kisch H, Zang L, Lange C, et al. Angewandte Chemie International Edition. 37(2010):3034-3036.
[5]. Yamashita H, Harada M, Misaka J, et al. Catalysis Today. 84(2003):191-196.
[6]. Irie H, Watanabe Y, and Hashimoto K. Journal of Physical Chemistry B. 107(2003):5483-5486.
[7]. Macyk W, Kisch H. Chemistry. 7(2001):1862-1867.
[8]. Asahi R, Morikawa T, Ohwaki T, et al. Science. 293(2001):269-271.
[9]. Nakamura R, Tomoaki Tanaka A, Nakato Y. Journal of Physical Chemistry B. 108(2004):10617-10620.
[10]. Diwald O, Thompson T L, Zubkov T, et al. Cheminform. 35(2004):219-221.
[11]. Chen X, Burda C. Journal of the American Chemical Society. 130(2008):5018-5029.
[12]. Valentin C D, Gianfranco P A, Selloni A. Chemistry of Materials. 17(2006):6656-6665.
[13]. Lin X, Rong F, Ji X, et al. Microporous and Mesoporous Materials. 142(2011):276-281.
[14]. Yu J C, Yu J, Ho W, et al. Cheminform. 33(2002):3808-3816.
[15]. Pan H, Zhang Y W, Shenoy V B, et al. Journal of Physical Chemistry C. 115(2011):12224-12231.
[16]. Mi L, Xu P, Shen H, et al. Applied Physics Letters. 90(2007):171909-1-3.
[17]. Frites M, Khan S U M. Electrochemistry Communications. 11(2009):2257-2260.
[18]. Choi M, Lee J H, Jang Y J, et al. Scientific Reports. 6(2016):36099-1-12.
[19]. Feng N, Liu F, Huang M, et al. Scientific Reports. 6(2016):34765-1-19.
[20]. Xue H, Jiang Y, Yuan K, et al. Journal of Computational and Theoretical Nanoscience. 18(2016):213-220.
[21]. Yamaki T, Sumita T, Yamamoto S. Journal of Materials Science Letters. 21(2002):33-35.
[22]. Hattori A, Tada H. Journal of Sol-Gel Science and Technology. 22(2001):47-52.
[23]. Periyat P, Pillai S C, Mccormack D E, et al. Journal of Physical Chemistry C. 112(2008):7644-7652.
[24]. Ohno T, Mitsui T, Matsumura M. Chemistry Letters. 32(2003):364-365.
[25]. Umebayashi T, Yamaki T, Tanaka S, et al. Chemistry Letters. 32(2003):330-331.
[26]. Umebayashi T, Yamaki T, Yamamoto S, et al. Journal of Applied Physics. 93(2003):5156-5160.
[27]. Natori H, Kobayashi K, Takahashi M. Journal of Oleo Science. 58(2009):389-394.
[28]. Shi Q, Yang D, Jiang Z, et al. Journal of Molecular Catalysis B Enzymatic. 43(2006):44-48.
[29]. Kamani H, Nasseri S, Khoobi M, et al. Journal of Environmental Health Science and Engineering. 14(2016):1-9.
[30]. Huang D, Liao S, Quan S, et al. Journal of Materials Science. 42(2007):8193-8202.
[31]. Lin C, Song Y, Cao L, et al. Nanoscale. 5(2013):4986-4992.
[32]. Ablat A, Wu R, Mamat M, et al. Solid State Communications. 243(2016):7-11.
[33]. Ablat A, Wu R, Jian J, et al. Materials Letters. 132(2014):86–89.
[34]. Valentin C D, Pacchioni G, Selloni A, et al. Journal of Physical Chemistry B. 109(2005):11414-11419.
[35]. Gomez-Polo C, Larumbe S, Pastor J M. Journal of Applied Physics. 113(2013):17B511-1-3.
[36]. Pandey S K, Choudhary R J. Journal of Physics Condensed Matter An Institute of Physics Journal. 23(2011):276005-1-11.
[37]. Drera G, Mozzati M C, Galinetto P, et al. Applied Physics Letters. 97(2010):012506-1-3.
[38]. Bao N N, Fan H M, Ding J, et al. Journal of Applied Physics. 109(2011):127201-1-4.
[39]. Pan L, Zou J J, Liu X Y, et al. Industrial and Engineering Chemistry Research. 51(2012): 12782-12786.
[40]. Dong F, Wang H, and Wu Z. Journal of Physical Chemistry C. 113(2009):16717-16723.
[41]. Li Y, Hwang D S, Lee N H, et al. Chemical Physics Letters. 404(2005):25-29.
[42]. Lee S, Yun C Y, Mi S H, et al. Korean Journal of Chemical Engineering. 25(2008):892-896.