Brownian motion under the influence of green noise

C. A. Guz, M. V. Sviridov



The motion of a Brownian particle is examined when exposed to green noise generated with a randomly localized potential function. To investigate this motion, an averaging method was developed which is valid for any intensity external noises. For the case of a limited quasi-periodic model potential, the particle trajectory implementations were numerically calculated. It is shown that introducing the effective potential in a certain manner plays a critical role when studying the possibility of a phase transition in a given system.

Full Text:



Unhlenbeck G. E., Ornstein L. S., Phis. Rev. 36, 823 (1930).

Wang M. C., Unhlenbeck G. E., Rev. Mod. Phys. 17, 323 (1945).

Hayashi S., Phys. Rev. E 52, 3614 (1995).

Kuś M., Wajnryb E., Wodkiewicz K., Phys. Rev. A 43, 4167 (1991).

Dialyna T. E, Tsironis G. Phys. Lett. A 218, 292 (1996).

Kula J., Czernik T., Łuczka J., Phys. Lett. A 214, 14 (1996).

Guz S. A., Sviridov M. V., Phys. Lett. A 240, 43 (1998).

Guz S. A., Sviridov M. V., Chaos 11, 605 (2001).

Bao J.-D. Physics Letters A, 256, 356 (1999).

Bao J.-D., Liu S. J. Phys. Rev. E 60, 7572 (1999).

Mannella R., Palleschi V., Phys. Rev., 40, 3381 (1989).

W. H. Press, S. A. Teukolsky et al. Nu-merical Recipes in C++. Second Edi-tion. Cambridge University Press, 1992.

Risken H. The Fokker-Planck Equation. Second Edition. Springer, Berlin 1989.

Guz S. A., Journal of Experimental and Theoretical Physics, 95, 166 (2002).


  • There are currently no refbacks.