Artemia spp. Model - A Well-Established Method for Rapidly Assessing the Toxicity on an Environmental Perspective

Main Article Content

Jie Yu Yin Lu


The toxicity testing bioassay using Artemia spp. as a biological model is used widely due to its advantages of rapid hatching and easy accessibility of nauplii hatched from durable cysts in a cost-efficient way, and high adaptabilities to harsh conditions thus ensuring easy handling under laboratory conditions. Rapidly assessing the toxicity of environmental contaminants which is of high significance will be further applied in the future, and three sensitive endpoints commonly used in this regard are acute mortality, acute cyst hatchability as well as behavioral response (swimming speed). The establishment of an international standard using Artemia spp. is necessary and that requires joint efforts of various stakeholders. Besides toxicity testing itself, Artemia spp. can be investigated to offer some of the valuable insights on a biological perspective and for bio-conservative purposes.

Article Details

How to Cite
YU, Jie; LU, Yin. Artemia spp. Model - A Well-Established Method for Rapidly Assessing the Toxicity on an Environmental Perspective. Medical Research Archives, [S.l.], v. 6, n. 2, feb. 2018. ISSN 2375-1924. Available at: <>. Date accessed: 23 mar. 2018. doi:
Research Articles


[1] Gosselin RE, Smith RP, Hodge HC. Clinical Toxicology of Commercial Products. 5th ed. Baltimore, MD: Williams & Wilkins Company, pp. 217–219. 1984.
[2] Williams PL, James RC, Roberts SM. Principles of Toxicology: Environmental and Industrial Applications. 2nd edn. London: John Wiley & Sons, pp. 325–345. 2003.
[3] Akimenko MA, Johnson SL, Westerfield M, Ekker M. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 1995; 121(2): 347–357.
[4] Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002; 297(5585): 1301–1310.
[5] Blechinger SR, Warren JT, Kuwada JY, Krone PH. Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ. Health. Perspect. 2002; 110(10); 1041–1046.
[6] Busquet F, Nagel R, von Landenberg F, Mueller SO, Huebler N, Broschard TH. Development of a new screening assay to identify proteratogenic substances using zebrafish danio rerio embryo combined with an exogenous mammalian metabolic activation system (mDarT). Toxicol. Sci. 2008; 104(1): 177–188.
[7] Harper SL, Dahl JL, Maddux BLS. Proactively designing nanomaterials to enhance performance and minimize hazard. Int. J. Nanotechnol. 2008; 5(1): 124–142.
[8] Henken DB, Rasooly RS, Freeman N, et al., Recent papers on zebrafish and other aquarium fish models. Zebrafish 2003; 1: 305–311.
[9] Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Developmental Dynamics 1995; 203(3): 253–310.
[10] Dvorak P, Benova K, Vitek J. Alternative Biotest on Artemia franciscana. Chapter 3 p. 51–74. In: Begum Ghousia (Ed.). Ecotoxicology. InTech, Rijeka, Croatia, p. 146. 2012.
[11] Van Steertegem M, Persoone G. Cyst-based toxicity tests: V. development and critical evaluation of standardized toxicity tests with the brine shrimp (Anostraca, Crustacea). In: Soares AMVM, Calow P (Eds.). Progress in Standardization of Aquatic Toxicity Tests. NewYork: Lewis Publishers, p. 81–97. 1993.
[12] United states environmental protection agency (US EPA). Proceedings of seminar on methodology or monitoring the marine environment. USE PA EPA600/4-74-004. 1983.
[13] Gajardo GM, Beardmore JA. The brine shrimp Artemia: adapted to critical life conditions. Front. Physiol. 2012; 3: 1-8.
[14] Persoone G, Sorgeloos P. General aspects of the ecology and biogeography of Artemia. In: Persoone G, Sorgeloos P, Roels PO, Jaspers E (Eds.). The Brine Shrimps Artemia, 3. Ecology, Culturing, Use in Aquaculture. Belgium: Universa Press, p. 3–24. 1980.
[15] Triantaphyllidis GV, Abatzopoulos TJ, Sorgeloos P. Review of the biogeography of the genus Artemia (Crustacea, Anostraca). J. Biogeogr. 1998; 25: 213–226.
[16] Zubairi SI, Othman ZS, Sarmidi MR, Aziz RA. Environmental friendly bio-pesticide Rotenone extracted from Derris sp.: A review on the extraction method, toxicity and field effectiveness. Jurnal. Teknologi. 2016; 78(8): 47-69.
[17] Marigo ́mez I, Soto M, Orbea A, Cancio I, Cajaraville MP. Biomonitoring of environmental pollution along the Basque coast, using molecular, cellular and tissue-level biomarkers: an integrative approach. In: Borja A, Collins M (Eds.). Oceanography and Marine Environment of the Basque Country. Amsterdam: Elsevier, p. 335–364. 2004.
[18] Pane L, Agrone C, Giacco E, Somà A, Mariottini GL. Utilization of marine crustaceans as study models: a new approach in marine ecotoxicology for European (REACH) regulation 91. Chapter 5, p. 91–107. In: Begum Ghousia (Ed.). Ecotoxicology. InTech, Rijeka, Croatia, p. 146. 2012.
[19] Libralato G, Prato E, Migliore L, Cicero AM, Manfra L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecological indicators 2016; 69: 35-49.
[20] Brix KV, Cardwell RD, Adams WJ. Chronic toxicity of arsenic to the Great Salt Lake brine shrimp, Artemia franciscana. Ecotoxicol. Environ. Saf. 2003; 54: 169–175.
[21] Leis M, Manfra L, Taddia L, Chicca M, Trentini P, Savorelli F. A comparative toxicity study between an autochthonous Artemia and a non native invasive species. Ecotoxicology 2014; 23 (6): 1143–1145.
[22] Hadjispyrou S, Kungolos A, Anagnostopoulos A. Toxicity, bioaccumulation, and interactive effects of organotin: cadmium and chromium on Artemia franciscana. Ecotoxicol. Environ. Saf. 2001; 49: 179–186.
[23] Xu X, Lu Y, Zhang D, Wang Y, Zhou X, Xu H, Mei Y. Toxic assessment of triclosan and triclocarban on Artemia salina. Bull. Environ. Contam. Toxicol. 2015; 95: 728–733.
[24] Kuwabara K, Nakamura A, Kashimoto T. Effect of petroleum oil, pesticides, PCBs and other environmental contaminants on the hatchability of Artemia salina dry eggs. Bull. Environ. Contam. Toxicol. 1980; 25: 69–74.
[25] Varó I, Taylor AC, Ferrando MD, Amat F. Effect of endosulfan pesticide on the oxygen consumption rates of nauplii of different Spanish strains of Artemia. J. Environ. Sci. Health B: Pestic. Food Contam. Agric. Wastes 1997; 32: 363–375.
[26] Varó I, Navarro JC, Amat F, Guilhermino L. Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere 2002; 48: 563–569.
[27] Krishnakurmar PK, Dineshbabu AP, Sasikumar G, Bhat GS. Toxicity evaluation of treated refinery effluent using brine shrimp (Artemia salina) eggs and larval bioassay. Fish. Technol. 2007; 44: 85–92.
[28] Manfra L, De Nicola E, Maggi C, Zambianchi E, Caramiello D, Toscano A, Cianelli D, Cicero AM. Exposure of rotifers, crustaceans and sea urchins to produced formation waters and seawaters in the Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 2011; 91 (1): 155–161.
[29] Manfra L, Maggi C, Bianchi J, Mannozzi M, Faraponova O, Mariani L, Onorati F, Tornambè A, Lamberti CV, Magaletti E. Toxicity evaluation of produced formation waters after filtration treatment. Natural Sci. 2010; 2 (1): 33.
[30] Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G. Use of the genus Artemia in ecotoxicity testing. Environ. Pollut. 2006; 144: 453–462.
[31] Manfra L, Savorelli F, Pisapia M, Magaletti E, Cicero AM. Long-term lethal toxicity test with the crustacean Artemia franciscana. JoVE 2012; 62: 2182–2185.
[32] Kokkali V, Katramados I, Newman JD. Monitoring the effect of metal ions on the mobility of Artemia salina nauplii. Biosensors 2011; 1(2): 36–45.
[33] Clegg JS, Trotman C. Physiological and biochemical aspects of Artemia ecology. Netherlands: Kluwer Academic Publishers, pp. 129–170. 2002.
[34] Gajardo G, Beardmore JA. Ability to switch reproductive mode in Artemia is related to maternal heterozygosity. Mar. Ecol. Prog. Ser. 1989; 56: 191–195.
[35] Gonzalo MG, John AB. The brine shrimp Artemia: adapted to critical life conditions. Frontiers in Physiology. 3, Front Physiol. pp.185. 2012
[36] Vanhaecke P, Persoone G, Claus C, Sorgeloos P. Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol. Environ. Saf. 1981; 5(3): 382–387.
[37] Vanhaecke P, Persoone G. Report on an intercalibration exercise on a short-term standard toxicity test with Artemia nauplii (ARC-test). In: Leclerc H, Dive D (Eds.). Les tests de toxicité aigue en milieu aquatique, Les colloques de l'INSERM. Paris: Ministère de la Santé, Institut National de la Santé et de la Recherche Médicale, p. 359-376. 1981.
[38] Vanhaecke P, Persoone G. The ARC-test: a standardized short-term routine toxicity test with Artemia nauplii. Methodology and evaluation. In: Persoone G, Jaspers E, Claus C (Eds.). Ecotoxicological testing for the marine environment. Experience papers: Tests with specific groups of organisms; Tests with specific chemicals; Tests using a specific technology; Tests studying specific effects; Case study. Ghent: State University of Ghent and Institute of Marine and Scientific Research, p. 143-158. 1984.
[39] Guzzella L. Saggio di tossicità acuta con Artemia spp. Biologia Ambientale 1997; 1: 4-9. (in Italian).
[40] APAT and IRSA-CNR. Metodi analitici per le acque (in Italian). 2003.
[41] Zhang QT, Hu GK. Studies on joint toxicity of five heavy metal ions to Artemia. J. Tianjin. Univ. Sci. Tech. 2010; 25(2): 26-29, 44.
[42] Wu ZF, Liu XG, Wang GX. Evaluating and modeling the toxicity of binary mixtures of heavy metals and organophosphate pesticides to Armetia salina. Asian. J. Ecotoxicol. 2013; 8(4): 602-608.
[43] Liu LP, Chu CY, Zhang QQ, Xue YZ, Li GR, Zhang Y. The application of Artemia in the toxicity test of drilling fluid. J. Ocean. Univ. Chin. 2010; 40(9): 96-100.
[44] Manfra L, Canepa S, Piazza V, Faimali M. Lethal and sublethal endpoints observed for Artemia exposed to two reference toxicants and an ecotoxicological concern organic compound. Ecotox. Environ. Safe. 2016; 123: 60-64.
[45] Coats JR. Risks from natural versus synthetic insecticides. Annual Review of Entomology 1994; 39(1): 489-515.
[46] Stoll G. Natural Crop Protection in the Tropics–based on Local Farm Resources in the Tropics and Subtropics. Weikersheim: Josef Margraf. 1992.
[47] Copping LG. The Biopesticide Manual: World Compendium. British Crop Protection Council. 1998.
[48] Ottoboni MA. The Dose Makes The Poison; A Plain-Language Guide To Toxicology. Van Nostrand Reinhold. 1991.
[49] Levine RR. Pharmacology: Drug Actions And Reactions. Boston: Little, Brown and Co.. pp. 279-280. 1973.
[50] Saiful IZ, Zetty SO, Mohamad RS, Ramlan AA. Environmental friendly bio-pesticide potenone extracted from Derris sp.: A review on the extraction method, toxicity and field effectiveness. Jurnal teknologl (Sciences & Engineering) 2016; 78(8): 47-69.
[51] Xu YH, Jiang T, Wang R, Shen PP, Wu N, Jiang TJ. Acute toxicity of Chattonella Marina on Artemia Sinica. J. Jinan. Univ. (Nat. Sci.). 2012; 33(5): 510-515.
[52] Oda T, Nakamura A, Midori S. Generation of reactive oxygen species by Raphidophycean phytoplankton. Biosci. Biotechnol. Biochem. 1997; 61: 1658-1662.
[53] Kuroda A, Nakashima T, Yamaguichi K. Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina. Comp. Biochem. Physiol. PTC. 2005; 141(3): 297-305.
[54] Bagshaw JC, Rafiee P, Matthews CO, MacRae TH. Cadmium and zinc reversibly arrest development of Artemia larvae. Bull. Environ. Contam. Toxicol. 1986; 37: 289–296.
[55] Neumeyer CH, Gerlach JL, Ruggiero KM, Covi JA. A novel model of early development in the brine shrimp, Artemia franciscana, and its use in assessing the effects of environmental variables on development, emergence, and hatching. J. Morphol. 2014; 276: 342–360.
[56] Brix KV, Gerdes RM, Adams WJ, Grosell M. Effect of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch. Environ. Contam. Toxicol. 2016; 51: 580–583.
[57] Sarabia R, Del Ramo J, Diaz-Mavans J, Torreblanca A. Development and reproductive effects of low cadmium concentration on Artemia parthenogenetica. J. Environ. Sci. Health A Toxicol. Hazard. Subst. Environ. Eng. 2003; 38: 1065–1071.
[58] Alyürüc H, Çavas L. Toxicity of diuron and irgarol on the hatchability and early stage development of Artemia salina. Turk. J. Biol. 2013; 37: 151–157.
[59] Rotini A, Manfra L, Canepa S, Tornambè A, Migliore L. Can Artemia hatching assay be a (sensitive) alternative tool to acute toxicity test ?! Bull. Environ. Contam. Toxicol. 2015; 95: 745–751.
[60] Migliore L, Civitareale C, Brambilla G, Dojmi di Delupis G. Toxicity of several important antibiotics to Artemia. Water Res 1997; 31: 1801–1806.
[61] Vanhaecke P, Sorgeloos P. International study on Artemia. XLVII. The effect of temperature on cyst hatching: larval survival and biomass production for different geographical strains of brine shrimp Artemia spp. Ann. Soc. R. Zool. Belgium 1989; 119: 7–23.
[62] Koutsaftis A, Aoyama I. Toxicity of diuron and copper pyrithione on the brine shrimp Artemia franciscana: the effects of temperature and salinity. J. Environ. Sci. Health Part A: Toxic/Hazard. Subst. Environ. Eng. 2008; 43: 1581–1585.
[63] Faimali M, Garaventa F, Piazza V, Corrà C, Magillo F, Pittore M, Giacco E, Gallus L, Falugi C, Tagliafierro G. Swimming speed alteration of larvae of Balanus amphitrite as behavioural end-point for laboratory toxicological bioassays. Mar. Biol. 2006; 149(1): 87–96.
[64] Rao JV, Kavitha P, Jakka NM, Sridhar V, Usman P. Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina. Arch. Environ. Contam. Toxicol. 2007; 53: 227–232.
[65] Kienle C, Gerhardt A. Behavior of Corophium volutator (Crustacea, Amphipoda) exposed to the water-accommodated fraction of oil in water and sediment. Environ. Toxicol. Chem. 2008; 27: 599–604.
[66] Xuereb B, Lefevre E, Garric J, Geffard O. Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration. Aquat. Toxicol. 2009; 94: 114–122.
[67] Seuront L, Behavioral fractality in marine copepods: endogenous rhythms vs. exogenous stressors. Physica A 2011; 309: 250–256.
[68] Garaventa F, Gambardella C, Di Fino A, Pittore M, Faimali M. Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys. Ecotoxicology 2010; 19: 512–519.
[69] Manfra L, Savorelli F, Di Lorenzo B, Libralato G, Comin S, Conti D, Floris B, Francese M, Gallo ML, Gartner I, Guida M, Leoni T, Marino G, Martelli F, Palazzi D, Prato E, Righini P, Rossi E, Volpi Ghirardini A, Migliore L. Intercalibration of ecotoxicity testing protocols with Artemia franciscana. Ecol. Indic. 2015; 57: 41–47.
[70] Pan RF. Experimental observation techniques and quantitative analysis methods used in zooplankton behavioral ecology. Ocean. Univ. Chin. 2014. (in Chinese)
[71] Libralato G. The case of Artemia spp. in nanoecotoxicology. Mar. Environ. Res. 2014; 101: 38–43.
[72] Persoone G, Blaise Chr, Snell T, Janssen C, van Steertegem M, Cyst-based toxicity test: II-report on an international intercalibration exercise with three cost-effective toxkits. Angew. Zool. 1993; 1: 17–34.
[73] Little EE, Brewer SK. Neurobehavioral toxicity in fìsh. In: Schlenk D, Benson WH (Eds.). Target Organ Toxicity in Marine and Freshwater Teleosts New Perspectives: Toxicology and the Environment 2. London and New York: Taylor and Francis, p. 139–174. 2001.
[74] De Los Ríos P, Gajardo G. The brine shrimp Artemia (Crustacea; Anostraca): a model organism to evaluate management policies in aquatic resources. Rev. Chil. Hist. Nat. 2004; 77: 3-4.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.