Virulence comparison of human and poultry Campylobacter jejuni isolates in a mouse model

Main Article Content

Darinka Vučković Maja Šikić Pogačar Peter Raspor Maja Abram Sonja Smole Možina Anja Klančnik http://orcid.org/0000-0003-1632-5785

Abstract

 

ABSTRACT

Objective: Research into Campylobacter jejuni pathogenesis and host responses to C. jejuni infection is needed in the fight against human campylobacteriosis.

Methods: We established intravenous infections of BALB/c mice with either a C. jejuni food isolate or C. jejuni of human origin. Further we include PCR to demonstrate the presence and stability of the putative virulence genes cadF, virbB11, cdtB, cdtC, ceuE in C. jejuni isolates and we examined cytokine production of IL-6, IL-12, TNF-α, IFN-γ, IL-10 in the livers of these infected mice.

Results: We confirm here the presence of the cadF, cdtB, cdtC and ceuE genes in a food and a clinical C. jejuni isolate, with no sequence changes after the C. jejuni sub-culturing in a food model and when recovered from mouse liver after infection. Both of these C. jejuni isolates persisted in the mouse livers and activated comparable cytokine patterns for IL-12, TNF-α, IFN-γ and IL-10, with down-regulation of IL-6.

Conclusions: These data show the comparability of these C. jejuni food and clinical isolates in terms of the prevalence and stability of their putative virulence genes and the outcome of disease during systemic murine campylobacteriosis.


Article Details

How to Cite
VUČKOVIĆ, Darinka et al. Virulence comparison of human and poultry Campylobacter jejuni isolates in a mouse model. Medical Research Archives, [S.l.], v. 5, n. 10, oct. 2017. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1581>. Date accessed: 28 mar. 2024. doi: https://doi.org/10.18103/mra.v5i10.1581.
Keywords
Campylobacter jejuni, Virulence genes, Cytokines, Murine infection
Section
Research Articles

References

References
1. European Food Safety Authority. The European Union report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J 2013;11:3129.
2. Hermans D, Van Deun K, Messens W, et al. Campylobacter control in poultry by current intervention measures ineffective: Urgent need for intensified fundamental research. Vet Microb 2011;152:219–228. doi: 10.1016/j.vetmic.2011.03.010
3. Szymanski CM, Gaynor EC. How a sugary bug gets through the day / Recent developments in understanding fundamental processes impacting Campylobacter jejuni pathogenesis. Gut Microbes 2012;3:135–144. doi: 10.4161/gmic.19488
4. Jiminez JA, Uwiera TC, Inglis GD, et al. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015;7:1-31. doi: 10.1186/s13099-015-0076-y
5. Smith CK, Kaiser P, Rothwell L, et al. Campylobacter jejuni-induced cytokine responses in avian cells. Infect Immun 2005;73:2094-3000. doi: 10.1128/IAI.73.4.2094-2100.2005
6. Al-Banna N, Raghupathy R, Albert MJ. Correlation of proinflammatory and anti-inflammatory cytokine levels with histopathological changes in an adult mouse lung model of Campylobacter jejuni infection. Clin Vaccine Immunol 2008;15:1780-1787. doi: 10.1128/CVI.00193-08
7. Hu L, Bray MD, Osorio M, et al. Campylobacter jejuni induces maturation and cytokine production in human dendritic cells. Infect Immun 2006;74:2697–2705. doi: 10.1128/IAI.74.5.2697-2705.2006
8. Vučković D, Abram M, Dorić M. Primary Campylobacter jejuni infection in different mice strains. Microb Pathog 1998;24:263–268.
9. Konkel ME, Kim BJ, Rivera-Amill V, et al. Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 1999;32:691-701.
10. Bacon DJ, Alm RA, Burr DH, et al. Involvement of a plasmid in virulence of Campylobacter jejuni 81–176. Infect Immun 2000;68:4384–4390.
11. Pickett CL, Pesci ES, Cottle DL, et al. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infect Immun 1996;64:2070–208.
12. Gonzalez I, Grant KA, Richardson PT, et al. Specific identification of the enteropathogens Campylobacter jejuni and Campylobacter coli using a PCR test based on the ceuE gene encoding a putative virulence determinant. J Clin Microbiol 1997;35:759–763.
13. Riedel CT, Brøndsted L, Rosenquist H, et al. Chemical decontamination of Campylobacter jejuni on chicken skin and meat. J Food Prot 2009;72:1173-1180.
14. National Research Council (US) Institute for Laboratory Animal Research.The development of science-based guidelines for laboratory animal care, In: Proceedings of the November 2003 International Workshop. Washington, DC: National Academies Press (US). 2004. http://www.ncbi.nlm.nih.gov/books/NBK25438
15. Klančnik A, Vučković D, Jamnik P, et al. Stress response and virulence of heat-stressed Campylobacter jejuni. Microbes Environ 2014;29:338-345. doi: 10.1264/jsme2.ME14020
16. Klančnik A, Vučković D, Plankl M, et al. In vivo modulation of Campylobacter jejuni virulence in response to environmental stress. Foodborne Pathog Dis 2013;10:566-572. doi: 10.1089/fpd.2012.1298
17. EFSA, The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA J 2014;12:3547. doi:10.2903/j.efsa.2014.3547.
18. Lara-Tejero M, Galán JE. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 2001;69(7):4358–4365. DOI:10.1128/IAI.69.7.4358-4365.2001
19. Park SF, Richardson PT. Molecular characterization of Campylobacter jejuni lipoprotein with homology to periplasmic siderophore-binding proteins. J Bacteriol 1995;177: 2259–2264.
20. Khoshbakht R, Tabatabaei M, Hosseinzadeh S, et al. Distribution of nine virulence-associated genes in Campylobacter jejuni and C. coli isolated from broiler feces in Shiraz, Southern Iran. Foodborne Pathog Dis 2013;10:764 –770. DOI: 10.1089/fpd.2013.1489
21. Rubeša Mihaljević R, Šikić Pogačar M, Klančnik A, et al. Environmental stress factors affecting survival and virulence of Campylobacter jejuni. Microb Pathog 2007;2/3:120-125. DOI:10.1016/j.micpath.2007.03.004
22. Vučković D, Abram M, Bubonja M, et al. Host resistance to primary and secondary Campylobacter jejuni infections in C57Bl/6 mice. Microb Pathog 2006;40:35-39. DOI:10.1016/j.micpath.2005.10.004
23. Day Jr. WA, Sajecki JL, Pitts TM, et al. Role of catalase in Campylobacter jejuni intracellular survival. Infect Immun 2000;68:6337–6345.
24. Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochem Biophys Acta 2011;1813:878-888. doi: 10.1016/j.bbamcr.2011.01.034
25. Havell EA. Role of TNF-α in resistance to bacteria. Immunol Ser 1992;56:341–363.
26. Beuscher HU, Rodel F, Forsberg A, et al. Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression. Infect Immun 1995;63:1270–1277.