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Introduction 

Klinefelters’ syndrome is genotypically 

characterized by a 47,XXY karyotype in 

men. The extra X chromosome of 

Klinefelter males is believed to cause 

azoospermia via germ cell degeneration,
1
 

although the condition may be incomplete 

as residual spermatogenesis can be present 

in some seminiferous tubules.
2
  The 

testicular histology of adult XXY mice 

exhibits small seminiferous tubules with 

varying degrees of intraepithelial 

vacuolization and the absence of germ 

cells.
3
 Furthermore, hypertrophy and 

hyperplasia of Leydig cells are observed in 

the interstitium.
3
 The hyperactivity of 

Leydig cells seen in XXY mice suggests 

that the changes in the endocrine milieu 

observed in Klinefelter syndrome is not due 

to impaired Leydig cell function.
4
  

Although sperm is rarely seen in ejaculates, 

27-42% of nonmosaic Klinefelter men 

possessing a 47,XXY karyotype may yield 

spermatozoa upon testicular biopsy.
5-8

  

These sperm are capable of fertilizing 
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mature oocytes by intracytoplasmic sperm 

injection and creating genetically healthy 

babies.
5,9-12

  

The epiblast of developing embryos creates 

primordial germ cells which are the 

precursors to spermatogonia and oogonia. 

In culture, primordial germ cells can be 

induced to differentiate into pluripotent 

embryonic germ cells in the presence of 

various growth factors. Investigators have 

previously shown that human testicular 

tissue derived pluripotent stem cells are 

capable of inducing ecto-, meso- and 

endodermal tissue formation.
13

 Despite 

genotypic differences of germ cells of 

males and females, both types of germ cells 

share the same progenitors, namely, 

primordial germ cells. The ultimate fate of 

XY male germ cells is dependent on 

environmental signaling in the gonad.
14

  

Several studies have demonstrated that the 

progeny of primordial germ cells/go-

nocytes, derived from human and murine 

spermatogonial stem cells, can be 

reprogrammed into embryonic stem-like 

cells in vitro without transgene 

manipulation,
15-19

 revealing the remarkable 

plasticity of spermatogonial stem cells.   

The existence of spermatogonial stem cells 

in the human testis has been characterized 

in vitro.
20

  The purpose of this case report is 

to provide observational documentation that 

testicular stem cells can be reprogrammed 

to form primordial germ cells and oocytes 

in a Klinefelter male.  

Methods 

A 29-year old healthy, married Caucasian 

male was determined to not have sperm in 

his ejaculate upon semen analysis (i.e., 

azoospermia), consistent with the infertile 

status of the couple.  His endocrine profile 

revealed normal serum testosterone and 

prolactin levels (290.7 ng/dL and 7.9 

ng/mL, respectively), while his FSH and 

LH levels were abnormally elevated (23.2 

mIU/mL and 32.0 mIU/mL, respectively).  

Upon further testing, he was determined to 

have a 47,XXY karyotype indicative of a 

clinical diagnosis of nonmosaic Klinefelter 

syndrome.  The patient presented with a 

tall, thin athletic build (6’2”, 190 lbs), 

normal intelligence and motor skills, and no 

other apparent genetic deficits.   

Desiring a fertile outcome, the patient 

pursued Urological treatment.  A micro-

surgical testicular sperm extraction proce-

dure was performed on both testicles in 

August 2008.  The testicular tissue was 

evaluated directly in the operating room by 

an experienced Embryologist (MCS), and a 

piece of testis biopsy from each side was 

fixed in Bouin’s solution and sent out for 

histological evaluation.  The seminiferous 

tubules were selectively dissected in 

HEPES-buffered human tubal fluid medium 

(Irvine Sci., Santa Ana, CA) supplemented 

with 5% human serum albumin (Irvine 

Sci.), and a brief preliminary assessment 

was made for the presence of sperm before 

the next specimen was procured.  Further 

detailed analysis of the shredded cellular 

debris was performed in an IVF laboratory 

using an inverted microscope under 400X 

magnification, as previously described.
21

   

As this case report did not involve a clinical 

study, investigational review board (IRB) 

approval or exemption was not sought.  

However, a standard informed consent was 

signed by the patient, confirming his 

approval that testicular biopsy outcome data 

may be published with standard anonymity 

as to patient identification, consistent with 

ethical research expectations. 
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Results 

Some variation in seminiferous tubular 

morphology was noted, with many tubules 

appearing vacuolated and most testis tissue 

having shortened, less convoluted sections. 

Furthermore, in most cases the tubules were 

difficult to shred using fine 27ga needles, 

having a somewhat sclerotic tendency upon 

stereomicroscopic dissection.  Cellular 

dispersion of the dissected testis biopsy 

tissues was not robust, and few, if any, 

spermatogenic cells were detected.  

Additionally, sertoli cells and some other 

small cells (approximately10 μm round) 

were identified.  The pathology report 

described germ cell aplasia with extensive 

fibrosis of the tubules with Leydig cell 

hypertrophy (Fig. A), which is consistent 

with Klinefelter’s syndrome.  Yet, other in 

vivo observations were not so typical.  The 

initial search of the cellular milieu/debris 

failed to report the presence of any sperm, 

as did further detailed assessments.  

However, early in the evaluation process it 

was semi-jokingly said that “there is no 

sperm, but appears to be egg-like cellular 

masses”.  As it turned out, that is all that 

was found of significance.  The first of 

which was the 130μm egg surrounded by a 

distinct zona pellucida layer, shown below 

(Fig. B1).  Upon detailed analysis in the 

IVF laboratory, hundreds of zona pellucida-

free oocyte-like primordial germ cells 

(ranging in size from 20-70μm) were 

observed, from a particular biopsy region.  

 

Figure A.  Histological examination of this Klinefelter patient exhibits cellular hypertrophy and 

hyperplasia of leydig cells in the interstium between seminferious tubules displaying germ cell 

aplasia. 
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Figure B.  The fully developed oocyte-like cell found in the dissected testis celluar milleu of the 

Klinefelter, 47 XXY male is the size of a mature egg (B1; scale: equals 100µm) and is 

surrounded by an apparent zona pellucida.  The textured appearance of the cytoplasm seemed 

usual, until we contrasted it to the documented texture of ooplasm in an oocyte experiencing 

osmotic shrinkage during vitrification solution exposure (B2).  In comparison, the testicular-

derived oocyte looks remarkably similar to a mature human oocyte undergoing vitrification 

solution exposure. 

Discussion 

Eppig and O’Brien (1996) first 

demonstrated that mouse spermatogonial 

stem cells possess the potential to be 

reprogrammed into oocyte-like cells and 

high quality oocytes when culture 

conditions were optimized using a 3D 

culture system with a supportive cell feeder 

layer.
 22

  Subsequently, XY embryonic stem 

cells were proven capable of differentiating 

into oocytes in culture.
23,24

  Several mouse 

studies have now demonstrated that 

spermatogonial stem cells can also revert 

back to pluripotency as embryonic stem-

like cells under certain culture conditions.
25

   

In fact, male embryonic stem cells and 

induced pluripotent stem cells have been 

shown to differentiate into primordial germ 

cell–like cells in vitro.
26

  Upon 

transplantation into mouse testes, murine 

primordial germ cell–like cell lines have 

proven capable of forming fully functional 

sperm.
27

  Hayashi and coworkers (2012) 

also found that female mouse stem cells can 

be induced to differentiate into primordial 

germ cell–like cells, which when 

aggregated in reconstituted ovaries, do 

exhibit epigenetic reprogramming and 

meiotic potential in vitro.
28

  

    By addressing questions about the role of 

specific genes in early germ cell 

development and the interaction between 

germ cells and supporting somatic cells, 

science has begun to unravel the mysteries 

of cellular differentiation.
29

 Observational 

and biochemical tests are able to assess 
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some cellular properties, as shown with 

human spermatogonial stem cells
20

 and 

testicular induced pluripotent stem cells.
13

  

However, these assays are inadequate to 

judge whether the cells would support the 

normal development of functional gametes. 

Murine pluripotent stem cells were first 

induced into primordial germ cell-like cells 

when aggregated with somatic cells of 

female embryonic gonads, the precursors 

for adult ovaries. When transplanted under 

the ovarian bursa of mice, these cellular 

aggregates formed germinal vesicle stage 

oocytes within a month. Hayashi’s group 

(2013) has determined that these stem cell-

derived GV oocytes can be matured into 

viable eggs capable of fertilization with 

spermatozoa to obtain healthy and fertile 

offspring.
28

  Wang and coworkers (2012) 

have also shown that mouse spermatogonial 

stem cells can be converted into oocyte-like 

cells in culture which are similar in size to 

normal mature murine oocytes.
25

  They 

have further exhibited that oocyte-specific 

markers are expressed and that the oocytes 

can produce embryos through 

parthenogenesis. Interestingly, both the Y- 

and X-linked testis-specific genes in mouse 

spermatogonial stem cell derived-oocytes 

are significantly down-regulated or turned 

off, while oocyte-specific X-linked genes 

are activated.
25 

 Although human stem cell 

investigations have yet to attain the success 

of the murine model forming functional 

gametes, it is feasible that a Klinefelter 

male with an extra X chromosome could 

experience a genomic upregulation 

resulting in oocyte-like germ cells being 

produced in an isolated region containing 

viable stem cells.  

It is widely accepted that isolated pockets 

of spermatogenesis can occur in seemingly 

azoospermic Klinefelter men,
2
 therefore it 

is possible that spermatogonial stem cells 

were present to transform into oocyte-like 

cells in vivo. Since there were no 

hermaphroditic indicators in this patient and 

histological analysis failed to reveal ovarian 

parenchyma, a rare ovotestis condition was 

ruled out.  In turn, the likely explanation is 

that testicular spermatogonial, or perhaps 

fibroblasts, in this patient underwent a 

pluripotent stem cell transformation into 

primordial germ cell-like cells and the 

formation of oocyte-like cells.  Because of 

the unexpected, surprising and unbelievable 

nature of this finding, photo documentation 

was the only verification conducted of this 

unique event, with no attempt being made 

to cryopreserve the tissue for subsequent 

testing. Unfortunately, prior to 2009 our 

laboratory was not applying vitrification 

technology or oocyte freezing which could 

have safely preserved the cellular integrity 

of those cells for additional genetic and 

biochemical examination. In turn, we 

acknowledge our failure to take advantage 

of this rare scientific discovery.  Therefore, 

we were unable to assess the potential 

viability of these oocyte-like germ cells, nor 

do we have any biochemical evidence to 

confirm whether and how this unique 

phenomenon occurred in a Klinefelter male. 

However, other scientific investigators have 

previously shown that human testis tissue 

can produce induced pluripotent stem cells 

in vitro.
13,15,16

  This case study does provide 

in vivo evidence that human pluripotent 

stem cells can potentially be induced and 

programmed to create gametes of either sex 

in vitro and in vivo.
30,31 
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