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Biopharmaceuticals represent a $160BN 

market that is the fastest growing component 

of the pharmaceutical sector.
1
 Based on 

pharmacogenomics and systems biology 

targeting, new drug approvals emerge at an 

impressive rate as they offer real potential to 

respond to the precision medicine initiative.
2
 

Many of these agents are curative and are 

increasingly targeted by employing patient 

stratification techniques based on genomic 

markers.
2
 Despite their promise, develop-

ment costs remain high with current 

estimates suggesting up to $2 BN per new 

chemical entity (NCE).
1
 These rapidly 

escalating costs are naturally reflected in 
drug pricing.  

Though such targeted therapeutics offer 

unquestioned benefit in disease 

management, they have also led to 

controversy, as some health care providers 

have established caps on permissible annual 

treatment costs. For example, the UK’s 

National Institute of Health Care and 

Excellence (NICE) has set a ceiling of £30k 

(approx. $44,000) for annual treatment 

costs, precluding access to a considerable 

number of life saving biopharmaceutical 

drugs.
3
 In an effort to impact costs of 

biopharmaceuticals in the USA congress 

enacted the Biologics Price Competition and 

Innovation Act (BPCIA) in 2012, to 

establish a regulatory pathway for biosimilar 

versions of innovator drugs.
4
 It is estimated 
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that some $50BN of innovator drugs will 

come off patent on the next five years, and 

while the degree of cost reductions remains 

to be determined, the first drugs approved 

through the pathway are now entering the 
market.

1
  

Along with drug cost itself, a major factor 

for the administration of most biologics is 

the requirement for patient delivery through 

intravenous injection, as the protein based 

products are incompatible with oral delivery. 

This is typically conducted at hospitals or 

infusion centers contributing to expendi-

tures, where drug administration can 

approach 50% of the total treatment cost.
5
 

Studies have been conducted comparing 

costs of parenteral drug delivery using 

different modalities and identified 

considerable savings with the subcutaneous 

(SQ) route,
5
 which has now become the 

focus of considerable development.
6
 Based 

on historical innovations in the patient-

administered insulin sector, in addition to 

cost savings and convenience to the user, 

this route of administration also has the 

added benefit of actively engaging the 

patient in the decision making process. By 

monitoring a circulating biomarker (blood 

glucose) levels, the decision when to inject 

drug (insulin) and dose thereof is responsive 

to the patients’ individual profile and 

parameters (diet, exercise etc.). Given trends 

in digital medicine and electronic 

monitoring devices worn by patients, such 

homeostatic management principles can be 

expected to produce benefits in many 

additional therapeutic areas. More generally, 

the move towards SQ injection routes can be 

expected to lead to improvements in patient 

quality of life, obviating the need for 

frequent time consuming visits to healthcare 

facilities, deriving economic benefit as an 
added consequence. 

Subcutaneous Delivery 

When considering alternates to conventional 

IV administration the volume of the 

formulated drug to be injected constitutes a 

major consideration. Slow IV infusions 

administered over large time periods may be 

inconvenient but are capable of delivering 

large volumes (>10 ml) with ease. Typical 

SQ administrations of insulin are in the 1-2 

ml range, requiring deep analysis to adapt 

for the delivery of the larger volumes 

needed for biologics. Based on this 

consideration, SQ appears the only viable 

alternative to IV delivery, as other 

transdermal methods suffer from volume 

constraint.
7
 Exacerbating the volume 

problem is the fact that the majority of 

biologics administered SQ would need to be 

uptaken via the lymphatic system once 

introduced to the interstitial matrix      

(Figure 1). This is a consequence of the high 

molecular mass of the drugs (e.g. 

monoclonal antibodies) precluding direct 

uptake to systemic circulation. Though not 

the case with the relatively low molecular 

weight insulin, most biologics require 

consideration of both drug pharmacokinetics 

and stability, which relates to lymphatic 

drainage and eventual translocation to 

systemic circulation via the subclavian vein 

(Figure 1).
8
 Myriad factors govern the 

movement of biologics from the interstitial 

matrix to the lymphatic capillaries including 

so called ‘Starling’ forces 
8, 9, 10

 which are 

impacted by the physicochemical properties 

of the drug substance (e.g. pI, charge, 

molecular mass etc).
11

 Another consequence 

of injecting large volumes are injection site 

reactions and events. These include, 

swelling, edema, erythema, bleb formation, 

and pressure buildup, which in turn can 

impact pain experienced.
12, 13

 These pheno-

mena are compounded with increasing 

injected volumes, and it has been suggested 

that 20 ml represents the realistic upper limit 

for SQ injection.
14

 Accordingly, considera-

ble work has been conducted in an attempt 

to minimize site reactions by reducing 

injected volumes and co-formulation with 

additives which can help mitigate site 
reactions. 
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Reducing volumes per se results in highly 

concentrated solutions with high viscosity. 

This presents an additional problem in that 

mechanical forces and back pressure on the 

delivery device (syringe needle and drive 

assembly) may result in vastly increased 

injection times. A potential remedy explored 

has been the use of crystalline forms of 

drugs suspended in solution, thereby 

reducing viscosity but increasing effective 

concentration.
15

  Another approach is to aid 

dispersion of the injected bolus, thereby 

reducing local effects. Methods evaluated 

include ionto and ionophoresis, 

sonophoresis and ultrasound.
16

 Chemical 

additives can also play a role, by improving 

the transport properties of the injected drug 

to enhance distribution. Buffers such as 

phosphoserine have been suggested,
17

 as 

have albumins,
18

 and chimeric constructs 

which stimulate uptake through the neonatal 

receptor.
19

 The utility of albumins has also 

been attributed to their capacity to act as so 

called volume expanders, allowing dispersal 

of the bolus from the injection locus. A 

similar approach led to the application of 

hyaluronidase enzymes, which function by 

degrading the hyaluronic acid embedded in 

the interstitial matrix (Figure 2). A number 

of naturally derived versions of this enzyme 

have been used to good effect,
20

 and a 

recombinant version was later developed.
21

 

Co-administration of such results in marked 

reduction in localized volume within 

minutes,
22

 and PK studies confirm 

comparable drug availability to that obtained 

under IV administration.
23 

Clinical trials 

have delivered impressive results,
24

 and a 

number of drugs are now in development 

using this technology (Table 1).
25

 This will 

greatly expand the volumes permissible for 

SQ delivery of biologics, and  volumes of 

250 mL have been demonstrated for 
rehydration.

26 
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Independent of such strategies, considerable 

research is being conducted comparing the 

impact of multiple sequential injections 

versus single larger injections of the same 

volumes. One such study with a monoclonal 

antibody drug revealed no impact on the 

pharmacokinetics between single and 
multiple injected volumes.

 27
 

Encouraged by these findings, major 

opportunities now exist for innovative 

approaches to SQ delivery. Given the 

pathway for systemic administration of 

biologics requires lymphatic uptake and 

trafficking, imaging methods are important 

tools for this method of drug delivery. At the 

injection site, scanning electron microscopy 

has been used to examine the morphology of 

the SQ basement membrane and septa, and 

also the injection puncture sites.
28

 X-ray CT 

(using radio-opaque dyes as vehicle) has 

been used to model plume architecture,
29

 

differentiate plume signatures in muscle and 

SQ tissue
30

 and verifying that plume 

distribution correlates well with classical 

histological approaches.
29

 Other useful 

imaging modalities include SPECT/PET and 

scintigraphy (using radiolabeled sub-

strates),
31

 fluorescent imaging employing 

near IR dyes or quantum dots to visualize 

lymphatic trafficking,
32

 echography to 

define the boundaries of injected boluses,
9
 

and MRI for anatomical imaging. At the 

molecular level, use of innovative mass 

spectrometry imaging methods, principally 

desorption electrospray ionization mass 

spectrometry (DESI), allows tracking of 

molecules in the sub-dermal layers at 

atmospheric pressure.
33 

Using these 

approaches, insightful studies can be 

designed which map SQ injected solution 

mobility as a function of critical key 

parameters in the drug delivery design 
space.  

 

 

Table 1. Selected Drugs in Development for SQ Delivery 

 

Drug   Trade Name  rHu20PH Company  Indication  Phase 

Insulin   Lantus  x  Sanofi   diabetes     IV 

Bortezomib  Velcade x  Takeda   oncology     IV 

Lanreotide  Somatuline x  Ipsen   oncology     IV 

Ceftriaxone  Rocephin x  scPharmaceuticals antibiotic     II/III 

Enoxaparin  Lovenox x  Sanofi   anticoagulant     IV 

Morphine  Roxanol �  multiple   analgesic     I 

Deferoxamine  Desferal x  multiple   hemochromatosis IV 

Trastuzumab  Herceptin �  Roche   oncology     IV 

Rituximab  Rituxan  �  Roche   oncology     IV  

Adalimumab   Humira  x  AbbVie   RA      IV 

Etanercept   Enbrel  x  Amgen   RA      IV 

Human IgG  Hyqvia  �  Baxter   immunodeficiency IV 

PCSK9 inhibitor  Bococizumab x  Pfizer   cardiovascular     III 

Selectins  Rivipansel �  Pfizer   sickle cell     II/III 

C1-esterase inhibitor Cinryze  �  Viropharma  angioedema     I 

Adalimumab   Humira  �  AbbVie   RA      I 

CD38   Daratumumab �  Janssen  oncology     I 
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Design of Next Generation Devices 

The rapid technological advances witnessed 

in the insulin market has seen development 

from pre-loaded syringes, pens, mechanical 

pumps, and now integrated ‘closed loop’ 

systems composed of an embedded glucose 

sensor connected to an infusion pump 

through a wireless link. 
34

 Introduced to the 

marketplace in 2017,
35

 such a breakthrough 

concept could lead to application of the 

concepts in a number of other           

indications.
36-37

 For example, detection of 

analyte biomarkers in tears,
38

 saliva,
39

 and 

skin
40

 has been demonstrated, and the 

potential to connect remote monitoring 

sensors to a drug delivery auto injector 

device is attractive.
41

 One of the principal 

limitations of closed loop systems using 

analyte detection in serum / tissue is the use 

life of embedded sensors and the 

administration port of the drug delivery 

component.
42, 43

 Embedded needle tips 

suffer from the foreign body reaction (FBR) 

wherein fibrous tissue can foul the surface 

and also induce inflammatory response.
44-46

 

The current use life of such systems is in the 

range of 3-7 days following which needle 

tips are exchanged, and some degree of 

wound management conducted by the 

patient or care provider. Efforts to extend 

this period are a topic of active 

investigation, as extending e.g. to a monthly 

regimen would offer considerable flexibility 

and convenience to the user.
47

 Among 

potential interventions are coated sensor 

tips,
48-53

 needles composed of synthetic 

materials,
54-56

 and the administration of anti-

fouling agents
57-58

 anti-inflammatory 

agents
59-60

 and preservatives
61-63

 at the point 

of skin penetration. In concert with these 

efforts, systems which utilize ex vivo 

sensing of biomarkers in biologic fluids 

potentially offer superior flexibility but 

require patient interaction e.g. collecting 

swabs of saliva
64

 or tears
65

 and insertion to 

an assessment device connected to the 

closed loop framework. In terms of drug 

delivery, innovations in both device and 

syringe technology continually advance. In 

the case of the latter, choice of needle design 

can play a role in drug dispersion and pain 

nociception. Following on from studies on 

needle size,
66

 it will be interesting to see if 

multi-beveled tips,
67

 and irrigation needles,
68

 

and sprinkler needles
69

 can enhance or mod-

ulate PK of SQ administered biologics either 

in the presence or absence of spreading 

agents such as rHuPH20 (Figure 3). 

 

Figure 3: Impact of needle architecture on injection performance indicators 

(l-r 5 point bevel tip, 3 point bevel tip, side-ported irrigation tip, ‘sprinkler’ tip) 

Patient-Focused Approaches 

Through developments in drug formulations 

and delivery device technology, SQ 

administration of biologics can now offer 

patients real choice.
70

 Several comparative 

clinical trials have been able to demonstrate 

the effectiveness of the SQ route 
24-25

 and 

additional comparative trials have 

established patient preference for the 

route.
6,71  

A variety of different SQ delivery 

options are available, including conventional 

syringe, single injection device, and auto-
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injector.
 
One of the primary considerations 

is perceived pain experienced by patients, 

and factors to be considered include 

injection locus (abdomen reported as less 

painful than thigh), solution viscosity,
9
 

volume injected, and speed of injection. One 

study noted patient preference for longer 

injection times with larger volumes,
72

 and a 

variety of studies outline the benefits of 

injection site rotation.
73

 Other studies 

suggest that tissue massage,
74

 or electrical 

stimulation
75

 may have potential to improve 

pain tolerance and could be useful for design 

of future comparative clinical trials. Other 

advances could involve modification of the 

form factor of the delivery device to 

conform to patient morphology. Experience 

in the design of patch style transdermal drug 

delivery systems could inform these 

approaches, with contoured reservoirs 

developed which are capable of housing 

large volumes of formulated drug product. It 

could be expected that such innovations 

would confer market advantage on the basis 

of personalized solutions, influenced by 
patient lifestyle parameters. 

Expected Developments 

With the advent of closed loop systems and 

progress in digital medicine, there is much 

anticipation for growth in the SQ delivery 

market. Given reported enhancement in both 

patient experience and regimen compli-

ance,
76-78

 one can expect impact in terms of 

health provision.
79

 As the space develops it 

will be guided by considerations of health 

care providers, and this in turn will be 

influenced by patient derived outcome 

measures in clinical trials. Given the 

potential for substantial cost savings in 

switching patients from IV to SQ drug 

delivery regimens,
80

 it is likely that this will 

drive the discussion in the near future. 

Allied to this are directives from the 

regulatory sector. In the USA, guidelines on 

the classification of biomarkers have been 

issued by a joint working group from FDA 

and NIH.
81

 The guidelines (referred to as 

Biomarkers EndpointS and other Tools or 

BEST),
82

 classify various biomarker types 

which will inform sensor design in closed-

loop systems (e.g. monitoring biomarkers, 

diagnostic biomarkers) as well as next 

generation biologics based on companion 

(Dx/Rx) diagnostics.
83-84

 Rapid innovation 

in the development of biologics is now 

occurring, and the market sector is also 

experiencing competition in the form of 

biosimilar drugs, as innovator products 

launched in the past decades come off 

patent.
85

 It will be interesting to monitor 

which innovator and biosimilar drugs are 

introduced for subcutaneous delivery. The 

variety of new user friendly devices 

including bolus injectors, single use pre-

filled syringes and auto-injectors could be 

expected to appeal to patient preferences and 

drive the market adoption.
6,71,86-88

  Equally, 

it could be expected that biosimilar 

developers may opt to repurpose innovator 

drugs designed for IV delivery as 

subcutaneous offerings, either through the 

351k or BLA pathway.
89

 In cases where co-

administration of the rHuPH20 hyaluron-

idase enzyme is desired, shelf-life of the co-

formulated product either in pre-filled 

devices or in reservoirs in closed-loop 

systems will be a factor to establish, guided 

by appropriate analytical studies.
90

 These 

key opportunities and challenges are likely 

to drive the agenda in the near future. 

Addressed appropriately, the subcutaneous 

drug delivery route has the potential to 

render a marked impact in managed 

healthcare, and is thus expected to sustain 

itself a high growth area of investigation in 
the years ahead. 
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