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Abstract 

 

Cancer results from a multi-step biological process consecutive to uncontrolled replication of 

transformed cells in which interactions with the surrounding environment and the host immune 

system play a major role. Anti-tumoral immune responses, mediated mostly by cytotoxic T cells, 

natural killer cells, and NK/T cells are in charge for killing the malignant cells and eradicating 

the tumor. At the early stages of cancer development they usually provide the appropriate 

immunosurveillance that eliminates most of the transformed cells. 

The connection between cancers and infections, mostly by viruses, has attracted major attention. 

Roughly 12% of all human cancers are caused by oncoviruses via complex mechanisms 

involving host genetic variability and viral oncogenesis, while, in contrast, oncolytic viruses 

selectively infect and kill malignant cells. In addition to these direct effects of viruses on tumor 

cells, infections by viruses as well as by other agents, as key activators of the immune system, 

may enhance the efficacy of cancer immunosurveillance through bystander modulation.  

This review provides an overview of the concept of immunosurveillance with highlighting its 

main cellular arms. We discuss the role of infections on cancer development and especially 

evidences of a positive effect of infections on the inhibition of some cancer development through 

enhancement of innate immune responses. This effect of infection might constitute a peculiar 

type of hygiene hypothesis, which could lead to distinct frequency of some cancers in 

populations with different exposure to infectious agents. 
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1. Introduction 

Cancer is the product of a multi-step 

biological process in which a single 

transformed cell leads to a clonal cancerous 

growth through consecutive divisions. This 

complex process involves different stages 

starting from initiation, which encompasses 

cell damage resulting in a permanently 

distorted growth potential, followed by 

progression, representing many rounds of cell 

replication mediating the gradual transition 

towards an independent, cancerous growth. 

Crucial expansion of these cancerous cells to 

distant sites resulting in numerous tumour 

sites has been recognized as metastasis [1]. 

Malignant tumor development generally 

occurs through a substantial period of life. 

Such a lengthy period is clear when 

comparing for example the starting age for 

smoking and the usual age at which diagnosis 

of lung cancer frequently happen [2,3] and is 

supported by many human and animal studies 

in which a variety of premalignant lesions has 

been recognized.  

Both genetic and environmental factors are 

involved in this progression towards clinical 

cancer. Chemical carcinogens cause DNA 

damage in the exposed cells [4], leading to 

uncontroled cell proliferation, sometimes just 

by producing mild toxic damage in affected 

tissue [5].  

The immune system is a central actor in the 

outcome of cancer development [6–8]. 

Normally, a competent immune system 

prevents the development of emerging tumors, 

a concept known as cancer 

immunosurveillance. Indeed, cancer 

immunosurveillance functions as an efficient 

extrinsic tumor suppressor mechanism against 

transformed cells. This protection is mediated 

via diverse arms of non-specific (innate) and 

specific (adaptive) immune mechanisms [8]. 

 

 

  

2. Carcinogenesis and environmental 

factors. 

In 1954, Armitage and Doll developed the 

concept of cancer multistage model involving 

several basic assumptions:  

1. Malignant tumors ascend from sequential 

alterations of one progenitor cell. 

2. The process of developing a malignancy is 

equally likely for all cells in the same tissue. 

3. Malignancy development process in one 

cell is totally apart from the process in any 

other cell. 

4. Once malignancy has developed in a cell, 

spread to an obvious cancer is fast and 

involves numerous cells in the same tissue, 

and possibly would include metastasis to 

another tissue [9]. 

 

2.1 Infections  

Infections with bacterial, viral and parasitic 

agents might have of central role in cancer rise. 

Schistosomiasis is a widespread helminthic 

infection in Asia and Egypt. The eggs of 

Schistosoma japonicum or S. haematobium are 

deposited in the colonic and bladder mucosa, 

respectively, causing inflammation and 

subsequent colon or bladder cancer [10]. A 

liver fluke, Opisthorchis viverrini, infects 

millions of people in Thailand and Malaysia. 

The flukes settle in bile ducts and increase the 

risk of cholangiocarcinoma [10]. Helicobacter 

pylori, a common bacterial infection of the 

stomach is a major cause of gastritis, ulcers and 

gastric cancer [10]. Aflatoxin, a mutagenic 

toxin found in moldy peanut and corn products, 

have been shown to interact with chronic 

hepatitis infection resulting in liver cancer 

development [11- 13]. Various major viral 

infections have contributed to development of 

malignancy. These include hepatitis B virus, 

(HBV) hepatitis C virus (HCV), Epstein Barr 

Virus (EBV), high-risk Human 

Papillomaviruses (HPVs), Human T 

lymphotropic Virus-1 (HTLV-1), HIV and 

Kaposi‘s sarcoma herpesvirus (KSHV). 
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Globally, oncoviruses count for about 12% of 

human cancers [14-16]. Even with their high 

incidence, significance to public health, and 

liability to prevention and directed therapies, 

understanding virus-induced cancers still has 

difficult challenges attributed to inadequate 

animal models of the disease, different nature 

of virally provoked cancers, and the complex 

nature of the virus-host cell interactions leading 

to cancer development [17].  However, various 

underlying mechanisms have been 

hypothesized for cellular changes leading to 

cancer in the course if viral infections. They 

include (i) Associated chronic inflammation 

that drives reactive oxygen species production 

and initiates mutations. This is evident in 

chronic HBV and HCV infections, where virus 

induced inflammatory reactions may finally 

lead to hepatocellular carcinoma. [18]; (ii) 

Recognition of viral genomes or replicative 

intermediates by the host leading to induction 

of DNA damage response needed by many 

oncoviruses for their replication; (iii) Signaling 

mimicry by viral-encoded proteins that 

destabilize host signaling mechanisms 

regulating cell growth and survival. As a result, 

host cells gain genetic instability, which 

increases their mutation rate, and speed up 

acquirement of oncogenic host chromosomal 

alterations [19]. As the host develops immune 

defenses against invading viral infections, 

viruses themselves have evolved to escape this 

protection. Human oncoviruses develop also 

strong immune evasion strategies to establish 

chronic infections, including anti-apoptotic and 

proliferative programs that in turn provoke 

malignant features in the infected cell [17, 20].  

 

3. Anti-tumoral immunity and 

immunosurveillance 

Despite being considered in the past a simple 

witness of the battle between pro- and 

antioncogenic signals, the immune system is 

currently being known as a central actor in the 

outcome of cancer development [21–23]. 

Immunity has apparently two contradictory 

effects on tumors. Normally, a competent 

immune system prevents the development of 

emerging tumors, a concept known as cancer 

immunosurveillance [23]. This assumption 

hypothesizes that the immune system can 

control tumour growth by identifying different 

antigens on cancer cell precursors and 

destroying them prior to becoming clinically 

apparent. Although only few data show 

immunological abolition of premalignant 

lesions in vivo, great evidence supports the 

cancer immune surveillance hypothesis [24]. 

For instance, endogenously produced 

interferon-γ (IFN-γ) was shown to be 

protective against the growth of spontaneous, 

transplanted or chemically induced tumors by 

mouse treatment with neutralizing anti-IFN-γ 

monoclonal antibodies [25, 26]. Alternatively, 

the immunological pressure induced by cancer 

immunosurveillance induces the intrinsic 

nature of developing tumors through 

immunoediting mechanism [27]. The 

‗Immunoediting‘ concept was established by 

the observation that tumors transplanted from 

an immune-deficient animal to a syngeneic 

immune-competent animal are often rejected 

by the recipient‘s immune system, while 

tumors rising in immune-competent animals 

generally grow unhindered after 

transplantation [28, 29]. This process includes 

three stages: elimination, equilibrium, and 

escape [30, 31]. Elimination phase 

corresponds to the classical assumption of 

cancer immunosurveillance, where 

transformed and early stage malignant cells 

are removed by immune cells. Equilibrium is 

the phase of immune-mediated latency 

following imperfect tumor destruction. Failure 

to eradicate all transformed cells results in the 

development of tumors with reduced 

immunogenicity that can escape immune 

destruction and even, control subsequent 

inflammatory responses to their own 

advantage.  
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In humans, severe primary immunodeficiencies 

are coupled with higher incidence of various 

cancers as lymphomas, stomach, breast, 

bladder and cervical cancers [32-35]. 

Moreover, high incidence of tumours 

associated with oncogenic viruses (HHV8-

related Kaposi sarcoma, EBV-related 

Hodgkin‘s and non-Hodgkin‘s lymphoma, 

HPV-associated cervical cancer and 

HBV/HCV-related hepatocarcinoma) has been 

found in HIV-infected immunodeficient 

patients [36]. Remarkably, a CD4 T-cell count 

in peripheral blood of HIV-infected individuals 

is inversely associated with increased cancer 

risk for these type of tumors [37]. Similarly, 

immunocompetent mice are able to reject 

cancer cells expressing surface ligands that can 

activate natural-killer (NK) cells or cytotoxic 

lymphocytes [38, 39], whereas RAG2
-/-

 mice 

lacking both T and B cells are more susceptible 

to spontaneous and carcinogen-induced 

tumours [40]. 

Over the recent decades, the role of 

components of the immune system like 

perforin [39], interferon-γ [40] and 

lymphocytes [41] have been proven to limit the 

outgrowth of transplanted, carcinogen-induced, 

and spontaneous tumors. However, despite the 

fact that immune responses can defend against 

malignancy, other immune mechanisms (i.e. 

chronic inflammation) can support the 

initiation or development of cancer [42]. Both 

inherent and extrinsic immune-regulating 

mechanisms can affect and control tumor 

development and progression. For example, 

following chronic viral infections exhausted 

immune cells will affect anti-cancer immune 

responses [43]. 

Most solid tumors are infiltrated by a wide 

array of immune cells including T cells (both 

CD4 helper and CD8 cytotoxic T lymphocytes) 

and NK cells [44]. Although these infiltrating 

immune cells usually display inefficient anti-

tumoral activity, the quality and magnitude of 

this infiltrate has been established as a 

prognostic indicator of disease progression 

[45]. To induce an effector and memory T cell 

response, specific tumor antigens are required. 

MAGE-1 was the primary gene known to code 

a human tumor antigen that is recognized by T 

cells [46]. Now, many tumor-associated 

antigens (TAAs) have been defined. TAAs can 

be classified in 3 main groups:1) tissue 

differentiation; 2) cancer-testis; and 3) 

naturally occurring over-expressed antigens 

[47]. Tissue differentiation antigens are shared  

antigens between tumors and the normal tissue 

of origin; (eg. Gp100, Melan-A/Mart-1, 

Tyrosinase) in melanomas [48-53] as well as 

prostatic specific antigen (PSA) in prostatic 

carcinoma  [54, 55]. Many cancer-testis 

antigens have been identified and tested in 

clinical trials, including the MAGE-A1 [56, 57] 

NY-ESO-141 and SSX-2 [58]. Over expressed 

TAAs such as tumor suppressor proteins (e.g. 

p53), antiapoptotic proteins livin and survivin, 

hTERT, Mucin 1 (MUC1) have increased 

expression in tumor cells when compared to 

normal tissues [59-65]. Tumor-associated 

carbohydrate antigens (TACAs) are glycans 

uniquely expressed or over-expressed by 

tumors, correlating also with various stages of 

cancer development [66-68]. The tumor – 

specific nature of these neo antigens is 

advantageous for eliciting specific T-cell 

responses with no risk of autoimmune 

reactions. Cancer vaccines based on defined 

specific tumor antigens should indeed elicit a 

very specific effector and memory cell 

response [69]. In view of the large number of 

possible tumor antigens for each cancer, the 

use of whole tumor cell vaccination approach 

has been considered the most favorable policy 

to embrace all potentially relevant antigens. 

However, several strategies have been 

implemented aiming to improve immune 

responses to peptide-based vaccines, via 

provoking the innate immune response [70, 

71]. Dendritic cell (DC)-based vaccines in 

which tumor antigens are loaded on DCs in the 

form of peptides, tumor lysates [72], or 

apoptotic debris [73], represent one of the most 
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promising strategies to achieve effective anti-

tumoral responses [74, 75]. 

 

3.1 Mechanisms of immunosurveillance 

 

The early stage of anti-tumor immune 

response, involve the stimulation of tissue-

located innate immune cells, such as 

macrophages and neutrophils that generate pro-

inflammatory cytokines and chemokines. This 

pulls other innate cells, including natural killer 

(NK) cells, which can recognize and kill 

directly transformed malignant cells. Later on, 

dendritic cells (DCs) can process tumor 

antigens produced by dying tumor cells and 

deliver those in the lymph node to naïve T 

lymphocytes, leading to the activation of 

antigen-specific cytotoxic T lymphocytes 

(CTLs) and helper T cells. These cells 

additionally assist in tumor destruction [76]. 

Nevertheless, innate immune cells cannot 

recognize canonical neo-antigens that arise 

during tumorigenesis unlike T lymphocytes. 

They engage innate receptors to recognize 

ubiquitous intracellular self ligands, such as 

nucleic acids, that stimulate responses in 

certain cancer-associated contexts. In addition, 

other innate receptors recognize ligands that 

are displayed primarily by abnormal cells, so-

called ―induced self ligands‖ 

. 

3.1.1 NK cells 

 

NK cells are the most effector arm of innate 

imunosurveillance of cancer that has been 

studied. Initially they were characterized by 

their strong ability to directly kill tumor cells in 

vitro without former recognition. Different 

mechanisms have been postulated for the 

tumoricidal action of NK cells. In vivo and in 

vitro studies have shown that perforin play a 

major role in direct tumor cell lysis  [77-83]. 

.Alternatively, the engagement of death 

receptor-mediated pathways like TRAIL and 

FasL can induce tumor cell elimination [80, 84, 

85]. This capacity of NK cells to kill tumor 

cells may explain their protective effect against 

cancer development [86-88]. NK cell infiltrates 

in tumor biopsies have been associated with 

better prognoses in cancer patients [89, 90]. 

Recently, enhancing the tumoricidal activity of 

NK cells became an interesting focus for 

therapeutic purposes. NK cells also modulate 

activity of other immune cells, such as 

dendritic cells and T lymphocytes, through 

cytokine secretion or various receptor-ligand 

interactions [91-91]. NK-cell-derived IFN-γ 

has shown to polarize macrophages towards a 

tumoricidal ―M1‖ phenotype that provide 

defense against carcinogen-induced sarcomas 

[26]. Cytokines secreted by innate immune 

cells can encompass additional direct 

tumoricidal activity. Stimulated NK cells are 

major sources for various cytokines including 

IFN-γ, TNF-α. IFN-γ in particular is 

hypothesized to be have potent antitumor 

effects, such as inducing MHC I expression 

and sensitizing tumor cells to CD8+ T cell 

killing. NK-cell-derived IFN-γ is related with 

better survival of patients in some cancers [94]. 

On the other hand, TNF-α via triggering 

caspase 8-mediated apoptosis can have direct 

cytolytic activity against malignant cells [95]. 

Together, IFN-γ and TNF-α can drive tumor 

cells into senescence [96].  

 

3.1.2 NKT cells  
 

In the context of tumor immunosurveillance, 

NKT cells can kill malignant cells through 

direct cytotoxicity or via activation of other 

immune cells. Type I NKT cells can directly 

lyse tumor cells through perforin-dependent 

mechanism [97], an effect that can be 

potentiated by granzyme B [98]. High 

expression levels of tumour CD1d, which 

restricts response of NKT cells has been 

associated with lower metastasis rates [101], 

whereas tumour cells expressing CD1d display 

high in vitro and in vivo susceptibility to direct 

NKT cell lysis [99–103].  
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α-GalCer the first recognized NKT cell ligand, 

is a strong activator of type I NKT cells. In 

mice with B16 melanoma, the application of its 

synthetic form (KRN7000) prolonged their 

survival (104, 29). Upon α-GalCer stimulation 

of NKT cells a profuse quantity of IFN-γ is 

released which is crucial for tumor protection 

[105, 106], including anti-metastatic activity in 

lung and liver metastasis models [107].  

Type I NKT cells can also mediate tumor 

immunosurveillance throuh initiatiation of Th1 

cytokine cascades. A strong correlation has 

been shown between the Th1 cytokine profile 

(in terms of IFN-γ:IL-4 ratio or IFN-γ 

production) and the extent of protection from 

tumor growth in CT26 lung metastasis mice 

model [108]. In different tumor models, IFN-γ 

release by NKT cells is the best correlate for 

tumor protection [109-113]. Surprisingly, NKT 

cells can augment tumor immunity by shifting 

the action of immunosuppressive cells, as 

shown in a model of influenza A virus 

infection, in which the absence of type I NKT 

cells resulted in the expansion of myeloid-

derived suppressor cells (MDSCs), which 

suppressed CD8+ T cell immune responses  

[114].  

Tumor-induced inflammation is usually 

accompanied by production of serum amyloid 

A1 (SAA-1) which increases the interaction 

between type I NKT cells and neutrophils. 

Type I NKT cells not only diminish the 

unfavorable effect of neutrophils by 

suppressing production of IL-10, and 

enhancing IL-12, but also re-establish 

proliferation of antigen-specific CD8+ T cells 

[115]. 

However, Type II NKT may have an 

immunosuppressive role on tumor immunology 

through MDSC activation and production of 

suppressive cytokines such as IL-13 and TGF-β 

[102, 116-119]. 

 

 

 

 

3.1.3 Macrophages  
 

Whereas much data focus on the crucial roles 

for T- and NK-cells in tumor immune 

surveillance, little evidence can show that 

macrophages can kill malignant cells through 

phagocytosis [120]. The established consensus 

is that macrophage activity is mostly 

protumorigenic through their ability to 

encourage angiogenesis and metastases [121]. 

Tumor associated macrophages (TAMs) of the 

M2 type can, however, be re-educated back 

towards a tumoricidal M1 phenotype through 

the production of IFN-γ, and the 

overexpression of miR-155 [27, 122].  

 

3.1.4 Tumor-associated neutrophils  

 

The presence of tumor-associated neutrophils 

(TANs) in human tumors correlates with 

advanced disease and poor outcome in several 

types of human cancer [123]. Although 

neutrophils usually play a role in tumor 

progression, their N2 phenotype can be 

reversed to an anti-tumoral N1 phenotype by 

TGF-β blockade [124] or by the effect of IFN-β 

[125]. 

 

3.1.5 Other innate cells of interest  
 

Based on their cytokine profiles, transcriptional 

activity, and effector functions, innate 

lymphoid cells (ILCs) strongly resemble the 

different helper T cell subsets. Depending on 

the secreted cytokines and the specific tumor 

microenvironment, ILCs may either aid anti-

tumor immune responses or promote tumor 

formation and growth [27,  126]. Gamma/delta 

(γδ) T-cells may limit cancer incidence in skin 

cancer mouse models and in a transgenic 

model of prostate adenocarcinoma through 

direct lysis of tumor cells [127, 128]. 
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4. The hygiene hypothesis 

 

The hygiene hypothesis, first proposed by 

Strachan in 1989 [129], suggests that the strong 

increased in the frequency of allergic diseases 

observed in advanced industrialized countries 

is caused by a reduced exposure to common 

infections in early childhood. Initially 

supported by epidemiological studies, a 

protective effect of infections on allergic 

diseases has been also reported in experimental 

models [130, 131]. It was first postulated that a 

decrease of Th1-inducing bacterial and viral 

infections would result in a Th2 immune 

microenvironment prone to the development of 

allergies. However, Th1 autoimmune diseases 

increases as well as allergies, and parasite-

induced Th2 microenvironments do not trigger 

more allergies in their host [132, 133]. Rather 

than a shift in Th1/Th2 balance, it has then 

been proposed that repeated infections 

inducing pro-inflammatory responses would in 

turn trigger Treg cell activation and secretion 

of immunosuppressive cytokines, like IL-10 as 

a counter-regulation. Therefore, the increase in 

both allergic and autoimmune diseases would 

result from a reduced immune suppression that 

was previously a consequence of childhood 

repeated infections [132-134]. A role of gut 

microbiota composition has also been 

suggested as a factor triggering such a 

modulation of immune response and of 

resulting diseases [135]. Whatever the 

mechanisms involved, it seems established that 
bacteria, viruses and parasites may sufficiently 

modulate the host immune microenvironment 

to deeply change not only the course of 

concomitant diseases initially unrelated to the 

infection, but also the probability to develop 

immune-regulated diseases. 

 

 

 

 

 

4.1 Infection and cancer: a peculiar 

hygiene hypothesis ? 

 

Could a decrease of infections similarly result 

in an increase in the development of some 

cancers ? As mentioned above, the relationship 

between infections and cancer has so far 

mostly be focused on the ability of several 

pathogens to trigger oncogenesis through cell 

transformation. This infectious agent-induced 

increased rate of cancers may sometimes result 

from inflammation, which would be a result 

radically different from what can be expected 

from an hygiene hypothesis. 

Oncolytic viruses (OVs) can selectively infect 

malignant cells and kill them while sparing 

normal healthy cells. This selective oncolysis 

can be either (i) natural feature of the virus, 

such as parvoviruses, myxoma virus or 

reovirus with minimal or no pathogenicity in 

humans;  (ii) a product of genetically-

engineered virus,  with mutations/deletions in 

genes required for replication in normal, but 

not cancer cells. Those OVs include 

adenovirus, herpes simplex virus, and vesicular 

stomatitis virus [136, 137]. Moreover, OVs 

may induce an intense host immune response, 

leading to the damage of remaining malignant 

cells and lasting antitumor immunity. Several 

OVs provoke immunogenic tumor cell death 

(ICD, such as immunogenic apoptosis, 

necrosis, and pyroptosis, which activates host 

immune responses [138, 139]. ICD is 

associated by cell surface exposure of 

calreticulin and heat shock proteins and the 

production of some molecules like ATP, uric 

acid, and high-mobility group box 1 that 

possess immune-stimulating characteristics. 

Furthermore, ICD of tumor cells also liberates 

tumor-associated antigens that are crucial for 

generating an antigen-specific antitumor 

immunity [140-142].  

Interestingly, a few clinical studies have 

reported an inverse relationship between an 

history of febrile infections or vaccinations and 

the development of melanoma [143-145], a 



M F Mandour. et al. Medical Research Archives vol 5, Issue 12. December Issue. Page 8 of 18 

 

Copyright 2017 KEI Journals. All Rights Reserved                            http://journals.ke-i.org/index.php/mra 

tumor that is known to be sensitive to 

destruction by NK cells [146]. In the mouse, 

acute infection with lactate dehydrogenase-

elevating virus (LDV), a nidovirus that induces 

a strong modulation of the immune 

microenvironment of its host, including NK 

cell activation [147], prevents plasmacytoma 

growth [148]. A similar inhibition of cancer 

development after LDV infection has been 

observed with mesothelioma (Mandour, 

unpublished data). The protective effect of 

LDV infection depends on NK cell activation 

and on IFN-γ production by those activated 

cells [148]. It may thus be postulated that 

repeated stimulation of the innate immune 

system, and especially of NK and/or NKT cells 

by infectious agents induce levels of IFN- γ 

sufficient to prevent the development of cancer 

cells sensitive to this cytokine. Such an 

protective effect of infections would constitute 

a peculiar type of hygiene hypothesis, that 

would be important to confirm in order to 

appropriately target preventive cancer 

diagnosis in populations with various levels of 

common infections. 
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