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Abstract

Bias field in medical images is an undesirable artifact primarily arises from the improper
image acquisition process or the specific properties of the imaged object. This artifact can be
characterized by a smooth variation of intensities across the image and significantly degrade
many medical image analysis techniques. Studies on bias correction have been investigated
extensively over these years. In this paper, we proposed to category and analysis existing bias
correction methods, provide a complete review article that enables comparative studies on bias
correction in medical images.

Keywords: Bias correction, intensity nonuniformity, intensity inhomogeneity, medial images,
segmentation

Introduction

With the rapid evolution of medical imaging systems in
recent years, clinical analysis of medical images generated
by numerous image acquisition technologies has played an
essential role in medical diagnoses. These analysis tasks are
needed of precise delineation of abnormal changes caused
by human diseases and occur in internal tissues and organs.
However, the structural complexity of tissues and organs, or
the tremendous numbers of images makes the manual delin-
eation wearisome or even impossible (Valverde et al., 2017;
Lladó et al., 2012). As a practicable solution, automated
analysis is nowadays generally accepted by medical com-
munity and has been widely used for clinical diagnoses (J.-
H. Lee, Marzelli, Jolesz, & Yoo, 2009; Gubern-Mérida et al.,
2015; Weese & Lorenz, 2016).

It has been validated that the feasibility of an automated
analysis system relies on some basic properties of ideal med-
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ical images (Zhang, Brady, & Smith, 2001; C. Li, Gore, &
Davatzikos, 2014). One of the most widely known is that
the images are theoretically piecewise constant with a small
number of classes. In other words, the intensity of the same
tissue should always be similar in one image and not vary
with the location of the tissue. For many automated analysis
techniques such as segmentation, classification and registra-
tion, this property can facilitate their procedures and make
their results reasonable (C. Li, Li, Kao, & Xu, 2009; C. Li,
Xu, Anderson, & Gore, 2009; Xu, Wan, & Bian, 2013; C. Li
et al., 2014).

However, this ideal condition never happens in reality ow-
ing to the presence of an undesirable artifact, which can con-
siderably affect the piecewise constant property in medical
images. This artifact is referred to as bias field, shading,
intensity inhomogeneity or intensity nonuniformity. It can
be obtained by various imaging modalities, such as magnetic
resonance imaging (MRI), computer tomography (CT), X-
ray, optical coherence tomography (OCT) and transmission
electron microscopy (TEM), etc, and comes from the im-
perfections of the image acquisition process. Bias field is
usually perceived as a smooth variation of intensities across
one image. This effect causes variation in the intensity of
the same tissue in the different location within the image,
hence invalidates the piecewise constant property of medical
images. Although the bias field is difficult to be observed
by human eyes, it can greatly degrade the accuracy of many
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automated analysis techniques. Consequently, a number of
methods have been proposed to correct for the bias field in
medical images.

The methods for bias correction were derived from some
earlier literatures (Haselgrove & Prammer, 1986; McVeigh,
Bronskill, & Henkelman, 1986; Axel, Costantini, & Lis-
terud, 1987), and later generalized in many studies on the
sources of bias field (Simmons, Tofts, Barker, & Arridge,
1994; Keiper et al., 1998; Liang & Lauterbur, 2000; Alecci,
Collins, Smith, & Jezzard, 2001). Recently, the correc-
tion methods can be classified into two main approaches ac-
cording to different sources of bias field, namely prospec-
tive and retrospective approaches (Vovk, Pernus, & Likar,
2007; Lefkovits, Lefkovits, & Vaida, 2015; Pop, Vaida,
et al., 2015). Prospective approaches aim at reducing the
bias field caused by the imperfect image acquisition process.
They include approaches based on adjustments of hardware
and acquisition devices, such as phantom-based calibration
(Collewet, Davenel, Toussaint, & Akoka, 2002), multi-coil
imaging (Brey & Narayana, 1988; P. Narayana, Brey, Kulka-
rni, & Sievenpiper, 1988), or specific designed medical imag-
ing sequences (Mihara, Iriguchi, & Ueno, 1998). Such ap-
proaches can remove scanner-related bias field, but fail to
remove the effect on the acquired image, i.e. the anatomy-
related bias field (Boroomand, Shafiee, Khalvati, Haider, &
Wong, 2015). Retrospective approaches propose to correct
for the bias field generated by some specific properties of
the imaged object, such as the shape, position, orientation
and the specific magnetic permeability of the object. These
approaches are based only on image intensities and prior
knowledge about imaged objects, and can be further clas-
sified into filtering based methods (Lewis & Fox, 2004; Co-
hen, DuBois, & Zeineh, 2000), surface fitting based meth-
ods (Dawant, Zijdenbos, & Margolin, 1993; Brechbühler,
Gerig, & Székely, 1996; Styner, Brechbuhler, Szckely, &
Gerig, 2000; Milles, Zhu, Gimenez, Guttmann, & Magnin,
2007), segmentation based methods (C. Li et al., 2011, 2014;
Xie, Gao, Zhu, & Zhou, 2015; Banerjee & Maji, 2015) and
histogram based methods (Sled, Zijdenbos, & Evans, 1998;
Mangin, 2000; Milles et al., 2007). Retrospective approaches
can deal with both scanner-related and anatomy-related bias
field artifacts, thus they are more general and flexible than
the prospective approaches.

Several reviews of methods for correction of bias field
have been published in the past. Earlier researches in regard
to performance comparison of different correction meth-
ods have been provided (Velthuizen et al., 1998; Arnold
et al., 2001). Afterward, a great variety of strategies re-
lated to bias correction were summarized (Belaroussi, Milles,
Carme, Zhu, & Benoit-Cattin, 2006; Hou, 2006). Recently,
a complete overview of bias correction methods published
until 2007 have been presented (Vovk et al., 2007). In this
paper, we propose to categorize and analyze various exist-

ing bias correction methods employed to date, and provide a
relatively complete discussion contains state-of-the-art tech-
niques in order to enable comparative studies on automatic
correction of bias field in medical images.

Models of Bias Field

The model of bias field in medical images is commonly
based upon the assumption that bias field is a low-frequency
artifact and perceived as a smooth spatially varying function
alters the image intensities (Vovk et al., 2007). The sim-
plest form of this model assumes that bias field is additive
or multiplicative. The additive form stems from the super-
position of the magnetic field in MRI, while the multiplica-
tive form comes form the sensitivity of the reception coils in
MRI (Lefkovits et al., 2015). However, disregard the bias
field, the real-world medical images are often corrupted by
high-frequency noise (Sled et al., 1998). Therefore, a more
appropriate image formation model used to describe the cor-
rupted image S should consider the interaction between bias
field B, bias-free image I and noise η.

According to different interactions of I, B and η, three
general formulation models have been proposed for bias cor-
rection. The most frequently used model assumes that the
noise arises from the imperfection of image acquisition de-
vices (Brechbühler et al., 1996; Styner et al., 2000) and in-
dependent of the bias field (Pham & Prince, 1999; Shattuck,
Sandor-Leahy, Schaper, Rottenberg, & Leahy, 2001). It is
a multiplicative model with an additive noise, as expressed
below:

S (x, y) = I(x, y)B(x, y) + η(x, y) (1)

where (x, y) index pixel in the image, and if an image has
M rows and N columns, respectively, we have 1 6 x 6 M
and 1 6 y 6 N. This noise η follows a Gaussian probabil-
ity distribution, namely scanner noise (Sijbers, den Dekker,
Scheunders, & Van Dyck, 1998).
Another formulation model is similar to the first, except that
the noise is added before the the bias-free image is corrupted.
This model considers that the noise comes from the tissue in-
homogeneity and can be scaled by the bias field, and has a
higher signal-to-noise ratio (SNR) (Prima, Ayache, Barrick,
& Roberts, 2001; Ashburner & Friston, 2005). It is defined
as follows:

S (x, y) = (I(x, y) + η(x, y))B(x, y) (2)

The third formulation model assumes that the bias field and
noise are additive. This model takes the logarithmic trans-
form of intensity to correct for the bias field (Guillemaud
& Brady, 1997; Van Leemput, Maes, Vandermeulen, &
Suetens, 1999; Wells, Grimson, Kikinis, & Jolesz, 1996),
and can be defined as follows:

log S (x, y) = log I(x, y) + log B(x, y) + η(x, y) (3)
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where the noise η is theoretically computed in the logarith-
mic domain and follows a Gaussian probability distribution.
However, in practice, the noise can be easily removed by
many simple methods (Vovk et al., 2007). Therefore, in most
of bias correction methods, the form of noise term is consid-
ered rather irrelevant or not to be considered.

Although there still exist other kinds of models in medi-
cal images, many studies have revealed that majority of cor-
rection methods are based on the simple and more reliable
correction models Eq. (1) – Eq. (3). The author in (Likar,
Viergever, & Pernus, 2001) extended the bias field term B
in Eq. (1) into multiplicative and additive components and
proposed a new model to correct for the bias field. How-
ever, this model is effective in microscopic images (Likar,
Maintz, Viergever, Pernus, et al., 2000) but not valid for the
popular MR images (Likar et al., 2001). Studies in the lit-
eratures (Velthuizen et al., 1998; Sled et al., 1998; Man-
gin, 2000) have theoretically proved that the model of a
smooth multiplicative bias field and additive noise is reason-
able. From a hardware perspective, the author in (Collewet
et al., 2002) proposed a physics based model, which is dif-
ferent from the simple multiplicative model of bias field.
This model is useful in in spin-echo T(1) images, but need
some special parameters and references, and the results is
still unreliable. Recently, various state-of-the-art techniques
sill depend on the three simple image formulation models
(Seshamani, Cheng, Fogtmann, Thomason, & Studholme,
2014; Nascimento, Frery, & Cintra, 2014; Lui, Modhafar,
Glaister, Wong, & Haider, 2014; Boroomand et al., 2015;
Banerjee & Maji, 2015; Miao et al., 2016; Chang et al.,
2016), further validates the general applicability of these
three models.

Classification of Correction Methods

Over the recent two decades, a large numbers of bias cor-
rection methods have been proposed. They can be classi-
fied into two main approaches: prospective and retrospec-
tive. Prospective approaches eliminate the bias field caused
by hardware equipment, while retrospective approaches re-
duce the bias field arises from the properties of imaged ob-
ject and more general than the prospective approaches. In
this section, we will provide a relatively detailed review of
both prospective and retrospective approaches.

Prospective Methods

Prospective methods focus on eliminating the bias field
arises from the devices of the image acquisition process,
and the bias correction can be done prospectively by cali-
brating and improving the acquisition process. These meth-
ods mainly make use of the images of a uniform phantom,
multi-coil imaging, or specific designed medical imaging se-
quences.

Phantom-Based Calibration. The phantom-based ap-
proach for correction of bias field can be accomplished by
acquiring an additional image of a uniform phantom with
a given physical properties. Several phantom based ap-
proaches have been proposed and investigated in the past
years (Condon, Patterson, Wyper, Jenkins, & Hadley, 1987;
Tofts et al., 1994; Davenel et al., 1999; Moyher, Vigneron,
& Nelson, 1995; Tincher, Meyer, Gupta, & Williams, 1993),
but none of them have been widely used in practice because
of the frequent and time-consuming acquisitions of the phan-
tom images. To deal with that problem, the author in (Wicks,
Barker, & Tofts, 1993) proposed a correction matrix to trans-
form the estimated phantom from just one or two orienta-
tions to images of any orientation, and therefore the number
of phantom acquisitions can be reduced. Besides, there also
exist many studies aim at mathematically modeling the bias
field (Tincher et al., 1993; Condon et al., 1987), and then fit
the model to the phantom image. The author in (Collewet
et al., 2002) provided a physics based mathematical model
that effective in improving the results of a standard phantom
calibration, but the drawback is too sensitive to the input pa-
rameters and references.

Multicoil Imaging. Such approaches for bias correction
can be done by acquiring additional images with different
coils. The coils can be divided into surface coils and body
coils. The surface coils have a high SNR but severe bias
field, while the body coils is just the opposite. In order to
get a bias-free image with a good SNR, (Brey & Narayana,
1988) proposed a method to combine the surface and body
coil images. The bias field can be acquired by separating the
filtered surface coil image and the body coil image, and then
smoothing the resulting image (P. Narayana et al., 1988).
However, these methods have two main disadvantages. First,
they have lengthy image acquisition time. Second, the bias
field of body coil image is hard to be completely separated
from the surface coil image. In order to shorten acquisition
times, The author in (Lai & Fang, 2003) employed a low
resolution body coil image registered to the full resolution
surface coil image, then the bias field used for correction can
be modeled by a spline surface. Dealing with the incomplete
inhomogeneity correction, (Fan et al., 2003) provided a ap-
proach to incorporate one body coil with the multiple surface
coil images, and then the bias can be obtained for estimation.

Special Sequences. Bias correction can be done by de-
signing special medical imaging sequences. It is because the
spatial distribution of the flip angle, which can be mathemat-
ically estimated from certain pulse sequences, can be used
to calculate the bias field in medical images. The author in
(Mihara et al., 1998) employed two flip angles (θ and 2θ)
to obtain two Spin-Echo images, then the spatial distribu-
tion of the flip angle can be computed for bias correction.
Furthermore, different from the methods using the same se-
quence with two different flip angles, the approach proposed
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in the (Thulborn, Boada, Shen, Christensen, & Reese, 1998)
is able to estimate the spatial variation of the flip angle using
a specific sequence, for example, the echo-planar imaging
(EPI) (Chiou, Ahn, Muftuler, & Nalcioglu, 2003; Belaroussi
et al., 2006). Besides, the methods of sensitivity encoding
by multiple receiver coils were mainly developed to speed
up the scanning process (Pruessmann, Weiger, Scheidegger,
Boesiger, et al., 1999). In general, majority of the special
sequences based methods are related to specific acquisition
(hardware) designs.

Retrospective

Retrospective approaches are more general and efficient
due to they are based only on the information from acquired
images and prior knowledge about imaged objects, but can
deal with both scanner- and anatomy-related bias field arti-
facts. The well-known retrospective approaches for bias cor-
rection can be divided into filtering based methods, surface
fitting based methods, segmentation based methods and his-
togram based methods.

Filtering Based Methods. Filtering based methods
treat the bias field as a low-frequency artifact that can be re-
moved from the high-frequency components of acquired im-
ages by a low-pass filter. These methods are simple and com-
putationally inexpensive and have been widely used in the
past years (P. A. Narayana & Borthakur, 1995; Murakami,
Hayes, & Weinberger, 1996; Johnston, Atkins, Mackiewich,
& Anderson, 1996; Tomaževič, Likar, & Pernuš, 2002).
However, the effectiveness of most conventional methods are
quite limited because of two reasons (Brinkmann, Manduca,
& Robb, 1998). First, many useful low-frequency structures
might be mistakenly eliminated by low-pass filtering. Sec-
ond, high contrast structures characterized at the low fre-
quencies may generate filtering artifacts known as edge ef-
fects, which can cause distortion of homogeneous tissues
near the edges. Later, Luo et al. (Luo, Zhu, Clarysse, &
Magnin, 2005) proposed to use a linear combination of sin-
gularity functions to recover low-frequency structures which
are lost during filtering. Besides, there also exist many solu-
tions used to handle the edge effects, such as replace back-
ground pixels by average intensity values (Johnston et al.,
1996; Cohen et al., 2000), or extrapolating tissue intensities
(Zhou et al., 2001; Simmons et al., 1994). These methods
are more efficient for bias correction. However, substantial
bias field still remains in the corrected image after filtering
(Arnold et al., 2001). Moreover, robust methods for esti-
mation of the bias field based on wavelet transform (Han,
Hatsukami, & Yuan, 2001; Lin, Chen, Belliveau, & Wald,
2003) or minimization of the segmentation error (Gispert et
al., 2004) have been proved to be effective in estimating the
bias field generated by surface coils and phase array coils.

Recently, two main filtering approaches have been widely
used for bias correction, namely homomorphic filtering (HF)

and homomorphic unsharp masking (HUM) methods, both
of them can be performed with a low-pass filter such as mean
based (Simmons et al., 1994; Zhou et al., 2001) and median
based (P. A. Narayana & Borthakur, 1995) filters. It has been
validated that the mean based filters are more suitable for im-
ages of human brain (Brinkmann et al., 1998).

Homomorphic Filtering. HF is use as a classical bias
correction technique conducted on log-transformed image
intensities (P. A. Narayana & Borthakur, 1995; Johnston et
al., 1996; Velthuizen et al., 1998; Sreenivasan, Havlicek, &
Deshpande, 2015; Yang, Gach, Li, & Mutic, 2016). This
method able to simultaneously increase contrast and reduce
bias field. It extracts the bias field by low-pass filtering (LPF)
of the input image, then the corrected image can be obtained
by subtracting the bias field from the input image in the log-
domain, as expressed below:

log I(x, y) = log S (x, y) − LPF(log S (x, y)) + CN (4)

where the the LPF(·) is the function of a low-pass filter, and
the CN is a normalization constant that used to keep the mean
or maximum intensity of the corrected image (Lewis & Fox,
2004).

Homomorphic Unsharp Masking. HUM was first pro-
posed by Axel (Axel et al., 1987). This method is an approx-
imation of classical HF, but is conducted on the original do-
main (non-log-transformed), which is conceptually straight-
forward, fast and can be easily implemented. The model of
HUM can be defined as blow:

I(x, y) = S (x, y)/B(x, y) = S (x, y)CN/LPF(S (x, y)) (5)

In many cases, HUM maybe the simplest and one of the
most commonly used methods for correction of the bias field
in medical images (Ardizzone, Pirrone, & Gambino, 2005;
Santha Kumari, Suresh, Yashwanth, & Rao, 2015; Ardiz-
zone, Pirrone, Gambino, & Vitabile, 2014).

Surface Fitting Based Methods. Surface fitting based
methods aim to model the bias field as a parametric sur-
face which is usually a polynomial or spline function. In the
modeling procedure, the parametric surface is fitted to a set
of image features that contain information about bias field.
Once a surface is generated, the bias field can be acquired
by extrapolating all points from the surface, then the cor-
rection is equivalently implemented using Eq. (1) or Eq. (3)
(Velthuizen et al., 1998). Regardless of the polynomial or
spline function used in the fitting process, the performance
of these methods relies heavily on the selection of image fea-
tures. According to different types of image features used for
surface fitting, these methods can be further classified into
the intensity based and gradient based approaches.

Intensity Based. Intensity based methods assume that
the intensities of one type of tissue do not vary significantly
unless they are corrupted by bias field. Therefore, the inten-
sity variation inside a region composed of the same type of
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tissues can be used to estimate the bias field. Dawant et al.
(Dawant et al., 1993) proposed a least squares method to fit
the thin plate splines to intensities of a set of manually se-
lected or automatically selected points, which are distributed
over the entire image but belong to the same tissue. Their ex-
periment indicated that the manual selection can lead to bet-
ter results, but is time-consuming and subjective. Zhuge et
al. (Zhuge, Udupa, Liu, Saha, & Iwanage, 2002) provided a
more efficient automatic approach to iteratively fitting a sec-
ond order polynomial to intensities of the tissue produced by
segmentation of homogeneous areas of the dominant tissue.
Moreover, Vemuri et al. (Vemuri, Kholmovski, Parker, &
Chapman, 2005) used a Gaussian dominant tissue model to
approximate the surface on every tissue regions, thus the bias
field across one entire tissue can be integrally estimated. The
main drawback of the intensity based methods is that the in-
tensity of just one major tissue may not contain the bias field
across the whole image, especially when the homogeneous
areas is too large.

Gradient Based. The gradient based methods assume
that the large bias areas are evenly distributed over the en-
tire image and can be corrected for by estimating the lo-
cal variation of intensity gradients. Meyer et al. (Meyer,
Bland, & Pipe, 1995) propose to fit a polynomial surface
to underlying normalized intensities of segmented homoge-
neous areas obtained from a segmented dataset. In order to
minimize the difference between derivatives of bias field and
the corresponding surface model, Lai et al. (Lai & Fang,
1999) proposed a finite element surface to model the bias
field and lead to good correction performance. There also
exist gradient based methods that can estimate the bias field
based on derivative of an integral (Vokurka, Watson, Wat-
son, Thacker, & Jackson, 2001; Vokurka, Thacker, & Jack-
son, 1999). However, the gradient based methods are effec-
tive only when the homogeneous areas are very large. For
a general image, these methods may introduce other adverse
image information (Vovk et al., 2007).

Segmentation Based Method. Segmentation based
methods perform alternating bias correction and image seg-
mentation steps. They consider that bias correction is com-
monly served as a necessary preprocessing step for facil-
itating image segmentation, and conversely, accurate seg-
mentation makes the bias correction insignificant. There-
fore, they merge the segmentation and bias correction steps
into a united framework to simultaneously yielding better
results of each step. According to different image segmen-
tation method utilized, these bias correction methods can
be further classified into approaches based on expectation-
maximization (EM) algorithm and fuzzy c-means (FCM) al-
gorithm.

EM Based. In EM based approaches, the expectation-
maximization (EM) algorithm are used for interleaved seg-
mentation and bias correction. These methods use paramet-

ric models which are based on a given probability criterion
to estimate the bias field. The maximum-likelihood (ML)
or maximum a posterior (MAP) probability is the frequently
used probability criterion. Once the criterion and model have
been chosen, the model’s parameters need to be estimated by
the EM algorithm.

EM algorithm was first used for segmentation of human
brain images (Wells et al., 1996). In this method, EM al-
gorithm is used to estimate a finite Gaussian mixture (FGM)
model which is based on the MAP criterion in order to jointly
perform bias field correction and simultaneous segmentation.
Guillemaud and Brady (Guillemaud & Brady, 1997) pur-
posed to improve the FGM models by introducing an addi-
tional tissue class which had a uniform intensity probability
distribution to model the intensities not belonging to any of
the major tissues. A similar idea is to use an mixed tissue
classes to model the partial volume effect (X. Li, Li, Lu, &
Liang, 2005). Gispert et al. proposed and refined a unique
approach to improve the EM iterative scheme by using a new
criterion named classification error rate (CER) (Gispert et al.,
2003, 2004). Bansal et al. proposed an EM based algorithm
by using the criterion of minimum image entropy (Bansal,
Staib, & Peterson, 2004). Moreover, the expectation con-
ditional maximization (ECM) algorithm (Prima et al., 2001;
Kim, Ng, McLachlan, & Wang, 2003), the adaptative gen-
eralized EM (AGEM) algorithm (Van Leemput et al., 1999)
or the iterative conditional modes (ICM) algorithm (X. Li et
al., 2005) extended the conventional EM algorithm for the
problems of vast number of searched parameters.

Fuzzy C-Means Based. The fuzzy c-means methods us-
ing energy minimization to perform simultaneous segmen-
tation and bias correction in which the standard fuzzy c-
means (FCM) algorithm is used for segmentation. The FCM
was originally used for MR images segmentation (James,
1981), not appropriate for bias correction. Lee and Vannier
(S. K. Lee & Vannier, 1996) employed the FCM to deal with
the bias field by adapting the clustering to local variations.
Pham and Prince (Pham & Prince, 1999) proposed an ex-
tension of FCM by using a bias field as a factor in the clus-
ter centers. This approach can be formulated as an energy
minimization scheme based on the fuzzy c-means (FCM) al-
gorithm, called adaptive FCM (AFCM). In order to improve
the availability of AFCM, in their later publication, Pham
extended AFCM to an improved formulation scheme named
FANTASM by adding a spatial regularization on the tissue
membership functions (Pham, 2001). Moreover, Ahmed et
al. proposed a new method to modify the original FCM.
This method adds a constraint term to introduce the neigh-
bor information of the pixels labels (Ahmed, Yamany, Mo-
hamed, Farag, & Moriarty, 2002). Recent methods based on
fuzzy c-means are more popular and attractive. Aparajeeta
et al. proposed three modified FCM algorithms to segment
the given MR image while estimating the bias field by the
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notions of possibilistic and fuzzy membership (Aparajeeta,
Nanda, & Das, 2016). A new method called Bias Estimated
Spatial Fuzzy C-means based on the spatial neighbourhood
information have been presented (Adhikari, Sing, & Basu,
2016). A hierarchical model based on multivariate student
t-distribution has been provided (Chen, Zhang, Zheng, Jeon,
& Wu, 2016).

Histogram Based Method. Histogram based methods
exploit the image histogram to automatically correct for the
bias field in medical images. Many of these methods require
an initialization or a priori knowledge about the intensity
or gradient probability distribution of the imaged structures.
According to the different prior knowledge used, these meth-
ods can be further classified into intensity distribution based
and gradient distribution based methods.

Intensity Distribution Based. Intensity distribution has
been employed by various bias correction methods. In 1998,
a classical method known as the nonparametric nonuniform
normalization (N3) was proposed (Sled et al., 1998). This
method iteratively seeks the smooth multiplicative field by
maximizing the high frequency component of the image in-
tensity distribution. As a de f acto standard in this field, N3
is easy to implement and has relatively outstanding perfor-
mance for a number of imaging subjects (Arnold et al., 2001;
Boyes et al., 2008; W. Zheng, Chee, & Zagorodnov, 2009).
Recently, an improved N3 method named N4 for bias cor-
rection has been proposed (Tustison et al., 2010). In this
method, corrected image at each iteration is computed by us-
ing the results of previous iteration, in contrast, N3 estimates
a "total bias field" in each iteration. Their experiment shown
that N4 are more superior in terms of effectiveness and effi-
ciency.

There still exist the method estimates bias field by esti-
mating the intensity distribution such as by image entropy
or by histogram matching (Vovk et al., 2007). Viola et al.
proposed to consider the image entropy (Viola & Wells III,
1997), and this method later applied in microscopic (Likar
et al., 2000) and MR images (Likar et al., 2000, 2001). An
iterative method to correct for the bias field by reducing the
global entropy of the feature space has been presented (Vovk,
Pernuš, & Likar, 2004). This method was extended by incop-
erate the spatial and intensity information from multispectral
MR images (Vovk, Pernuš, & Likar, 2006). Vovk et al. pro-
posed a histogram method to correct for the bias field by fit-
ting a B-spline bias field to local estimates of image nonuni-
formity, and the local estimates are computed based on the
image histogram of local intensity distribution (Shattuck et
al., 2001). Styner et al. presented a histogram method strat-
egy by modeling the Legendre polynomial inhomogeneity as
a special valley function (Styner et al., 2000). Their exper-
iment has demonstrated the high degree of robustness and
versatility of this method.

Gradient Distribution Based. Recently, a method es-
timates the bias field by using the sparseness property
of the gradient probability distribution has been proposed
(Y. Zheng, Grossman, Awate, & Gee, 2009). This method
is based on the assumption that the gradient of real-world
images obey a sparse probability distribution (Olshausen et
al., 1996; Y. Zheng, Yu, Kang, Lin, & Kambhamettu, 2008),
which can be characterized by a high kurtosis and two heavy
tails. This sparse distribution model can be expressed as:

ρ(x) = e−|x|
α

(6)

where the parameter α < 1 and can be fit from the gradi-
ent histogram. In Zheng et al.’s method, the image gradient
histogram with the optimal bin size is computed to fit the
Eq. (6) with the maximum likelihood (Aldrich et al., 1997;
Shimazaki & Shinomoto, 2007). The method is easy to im-
plement due to it works by solving an iteratively re-weighted
least squares (IRLS) problem. The experimental results in-
dicate that this method has outstanding performance on the
images object provided by different imaging modalities.

Conclusion

This paper reviewed various existing methods for bias cor-
rection in medical images. These methods were categorized
and analysed according to difference sources of bias field or
features used in the process of correcting. It is worth atten-
tion that although the number of issues corresponding to dif-
ferent methods have been studied for many years, bias field
correction is still completely solved problem. The seductive
strategies have been investigated constantly, for example, a
method based on the sparseness of the gradient distribution
(Y. Zheng et al., 2008), which has been used successfully
vignetting correction and has recently applied in medical im-
ages (Y. Zheng et al., 2009). In the future, we hope that the
sparseness property, which can be treated as a robust prior
knowledge of an ideal image or an ideal deformation field,
may work following many medical analysis techniques such
as segmentation, classification, or registration in medical im-
ages.
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